Difference between revisions of "1982 AHSME Problems/Problem 19"
MRENTHUSIASM (talk | contribs) (Created page with "== Problem == Let <math>f(x)=|x-2|+|x-4|-|2x-6|</math> for <math>2 \leq x\leq 8</math>. The sum of the largest and smallest values of <math>f(x)</math> is <math>\textbf {(A)...") |
MRENTHUSIASM (talk | contribs) m (→Solution) |
||
(6 intermediate revisions by the same user not shown) | |||
Line 17: | Line 17: | ||
(x-2)+(x-4)-(2x-6) & \mathrm{if} \ 4\leq x\leq8 | (x-2)+(x-4)-(2x-6) & \mathrm{if} \ 4\leq x\leq8 | ||
\end{cases},</cmath> | \end{cases},</cmath> | ||
− | which | + | which simplifies to |
<cmath>f(x) = \begin{cases} | <cmath>f(x) = \begin{cases} | ||
2x-4 & \mathrm{if} \ 2\leq x<3 \\ | 2x-4 & \mathrm{if} \ 2\leq x<3 \\ | ||
Line 24: | Line 24: | ||
\end{cases}.</cmath> | \end{cases}.</cmath> | ||
The graph of <math>y=f(x)</math> is shown below. | The graph of <math>y=f(x)</math> is shown below. | ||
+ | <asy> | ||
+ | /* Made by MRENTHUSIASM */ | ||
+ | size(200); | ||
− | + | int xMin = -2; | |
+ | int xMax = 10; | ||
+ | int yMin = -2; | ||
+ | int yMax = 4; | ||
+ | //Draws the horizontal gridlines | ||
+ | void horizontalLines() | ||
+ | { | ||
+ | for (int i = yMin+1; i < yMax; ++i) | ||
+ | { | ||
+ | draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | //Draws the vertical gridlines | ||
+ | void verticalLines() | ||
+ | { | ||
+ | for (int i = xMin+1; i < xMax; ++i) | ||
+ | { | ||
+ | draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | //Draws the horizontal ticks | ||
+ | void horizontalTicks() | ||
+ | { | ||
+ | for (int i = yMin+1; i < yMax; ++i) | ||
+ | { | ||
+ | draw((-3/16,i)--(3/16,i), black+linewidth(1)); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | //Draws the vertical ticks | ||
+ | void verticalTicks() | ||
+ | { | ||
+ | for (int i = xMin+1; i < xMax; ++i) | ||
+ | { | ||
+ | draw((i,-3/16)--(i,3/16), black+linewidth(1)); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | horizontalLines(); | ||
+ | verticalLines(); | ||
+ | horizontalTicks(); | ||
+ | verticalTicks(); | ||
+ | draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); | ||
+ | draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); | ||
+ | label("$x$",(xMax,0),(2,0)); | ||
+ | label("$y$",(0,yMax),(0,2)); | ||
+ | |||
+ | pair A[]; | ||
+ | A[0] = (2,0); | ||
+ | A[1] = (3,2); | ||
+ | A[2] = (4,0); | ||
+ | A[3] = (8,0); | ||
+ | |||
+ | draw(A[0]--A[1]--A[2]--A[3],red+linewidth(1.5)); | ||
+ | |||
+ | for(int i = 0; i <= 3; ++i) { | ||
+ | dot(A[i],red+linewidth(4.5)); | ||
+ | } | ||
+ | |||
+ | label("$(2,0)$",A[0],(0,-1.5),UnFill); | ||
+ | label("$(3,2)$",A[1],(0,1.5),UnFill); | ||
+ | label("$(4,0)$",A[2],(0,-1.5),UnFill); | ||
+ | label("$(8,0)$",A[3],(0,-1.5),UnFill); | ||
+ | </asy> | ||
The largest value of <math>f(x)</math> is <math>2,</math> and the smallest value of <math>f(x)</math> is <math>0.</math> So, their sum is <math>\boxed{\textbf {(B)}\ 2}.</math> | The largest value of <math>f(x)</math> is <math>2,</math> and the smallest value of <math>f(x)</math> is <math>0.</math> So, their sum is <math>\boxed{\textbf {(B)}\ 2}.</math> | ||
Latest revision as of 11:26, 13 September 2021
Problem
Let for . The sum of the largest and smallest values of is
Solution
Note that at one of the three absolute values is equal to
Without using absolute values, we rewrite as a piecewise function: which simplifies to The graph of is shown below. The largest value of is and the smallest value of is So, their sum is
~MRENTHUSIASM
See Also
1982 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.