Difference between revisions of "2014 AMC 12B Problems/Problem 24"
m (→Solution 1.) |
(→Solution 1.) |
||
Line 8: | Line 8: | ||
\textbf{(E) }421\qquad</math> | \textbf{(E) }421\qquad</math> | ||
− | ==Solution 1 | + | == Solutions == |
+ | === Solution 1 === | ||
Let <math>BE=a</math>, <math>AD=b</math>, and <math>AC=CE=BD=c</math>. Let <math>F</math> be on <math>AE</math> such that <math>CF \perp AE</math>. | Let <math>BE=a</math>, <math>AD=b</math>, and <math>AC=CE=BD=c</math>. Let <math>F</math> be on <math>AE</math> such that <math>CF \perp AE</math>. | ||
<asy> | <asy> |
Revision as of 15:32, 22 September 2021
Contents
[hide]Problem
Let be a pentagon inscribed in a circle such that
,
, and
. The sum of the lengths of all diagonals of
is equal to
, where
and
are relatively prime positive integers. What is
?
Solutions
Solution 1
Let ,
, and
. Let
be on
such that
.
In
we have
. We use cosine formula in
to get
. Eliminating
we get
which factorizes as
Discarding the negative roots we have
. Thus
. For
, we use Ptolemy's theorem on quadrilateral
to get
. For
, we use Ptolemy's theorem on quadrilateral
to get
.
The sum of the lengths of the diagonals is so the answer is
Solution 2.
Let denote the length of a diagonal opposite adjacent sides of length
and
,
for sides
and
, and
for sides
and
. Using Ptolemy's Theorem on the five possible quadrilaterals in the configuration, we obtain:
Using equations and
, we obtain:
and
Plugging into equation , we find that:
Or similarly into equation to check:
, being a length, must be positive, implying that
. In fact, this is reasonable, since
in the pentagon with apparently obtuse angles. Plugging this back into equations
and
we find that
and
.
We desire , so it follows that the answer is
See also
2014 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.