Difference between revisions of "2021 Fall AMC 12A Problems/Problem 25"
MRENTHUSIASM (talk | contribs) (Created page with "==Problem== Let <math>m\ge 5</math> be an odd integer, and let <math>D(m)</math> denote the number of quadruples <math>\big(a_1, a_2, a_3, a_4\big)</math> of distinct integers...") |
MRENTHUSIASM (talk | contribs) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>m\ge 5</math> be an odd integer, and let <math>D(m)</math> denote the number of quadruples <math> | + | Let <math>m\ge 5</math> be an odd integer, and let <math>D(m)</math> denote the number of quadruples <math>(a_1, a_2, a_3, a_4)</math> of distinct integers with <math>1\le a_i \le m</math> for all <math>i</math> such that <math>m</math> divides <math>a_1+a_2+a_3+a_4</math>. There is a polynomial |
<cmath>q(x) = c_3x^3+c_2x^2+c_1x+c_0</cmath>such that <math>D(m) = q(m)</math> for all odd integers <math>m\ge 5</math>. What is <math>c_1?</math> | <cmath>q(x) = c_3x^3+c_2x^2+c_1x+c_0</cmath>such that <math>D(m) = q(m)</math> for all odd integers <math>m\ge 5</math>. What is <math>c_1?</math> | ||
− | <math> | + | <math>\textbf{(A)}\ {-}6\qquad\textbf{(B)}\ {-}1\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 11</math> |
==Solution== | ==Solution== | ||
− | < | + | For a fixed value of <math>m,</math> there is a total of <math>m(m-1)(m-2)(m-3)</math> possible ordered quadruples <math>(a_1, a_2, a_3, a_4).</math> |
+ | |||
+ | Let <math>S=a_1+a_2+a_3+a_4.</math> We claim that exactly <math>\frac1m</math> of these ordered quadruples satisfy that <math>m</math> divides <math>S:</math> | ||
+ | |||
+ | Since <math>\gcd(m,4)=1,</math> we conclude that <cmath>\{k+4(0),k+4(1),k+4(2),\ldots,k+4(m-1)\}</cmath> is the complete system of residues modulo <math>m</math> for all integers <math>k.</math> | ||
+ | |||
+ | Given any ordered quadruple <math>(a'_1, a'_2, a'_3, a'_4)</math> in modulo <math>m,</math> it follows that exactly one of these <math>m</math> ordered quadruples satisfy that <math>m</math> divides <math>S:</math> | ||
+ | <cmath>\begin{array}{c|c} | ||
+ | & \ [-2.5ex] | ||
+ | \textbf{Ordered Quadruple} & \textbf{Sum Modulo }\boldsymbol{m} \ [0.5ex] | ||
+ | \hline | ||
+ | & \ [-2ex] | ||
+ | (a'_1, a'_2, a'_3, a'_4) & S+4(0) \ [0.5ex] | ||
+ | (a'_1+1, a'_2+1, a'_3+1, a'_4+1) & S+4(1) \ [0.5ex] | ||
+ | (a'_1+2, a'_2+2, a'_3+2, a'_4+2) & S+4(2) \ [0.5ex] | ||
+ | \cdots & \cdots \ [0.5ex] | ||
+ | (a'_1+m-1, a'_2+m-1, a'_3+m-1, a'_4+m-1) & S+4(m-1) \ [0.5ex] | ||
+ | \end{array}</cmath> | ||
+ | We conclude that <math>q(m)=\frac1m\cdot[m(m-1)(m-2)(m-3)]=(m-1)(m-2)(m-3),</math> so <cmath>q(x)=(x-1)(x-2)(x-3)=c_3x^3+c_2x^2+c_1x+c_0.</cmath> | ||
+ | By Vieta's Formulas, we get <math>c_1=1\cdot2+1\cdot3+2\cdot3=\boxed{\textbf{(E)}\ 11}.</math> | ||
~MRENTHUSIASM | ~MRENTHUSIASM |
Revision as of 01:18, 24 November 2021
Problem
Let be an odd integer, and let denote the number of quadruples of distinct integers with for all such that divides . There is a polynomial such that for all odd integers . What is
Solution
For a fixed value of there is a total of possible ordered quadruples
Let We claim that exactly of these ordered quadruples satisfy that divides
Since we conclude that is the complete system of residues modulo for all integers
Given any ordered quadruple in modulo it follows that exactly one of these ordered quadruples satisfy that divides We conclude that so By Vieta's Formulas, we get
~MRENTHUSIASM
See Also
2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.