Difference between revisions of "2021 Fall AMC 12A Problems/Problem 15"

(Solution)
Line 4: Line 4:
 
<math>(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304</math>
 
<math>(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304</math>
  
==Solution==
+
==Solution 1==
  
 
By Vieta's formulas, <math>z_1z_2+z_1z_3+\dots+z_3z_4=3</math>, and <math>B=(4i)^2\left(\overline{z}_1\,\overline{z}_2+\overline{z}_1\,\overline{z}_3+\dots+\overline{z}_3\,\overline{z}_4\right).</math>
 
By Vieta's formulas, <math>z_1z_2+z_1z_3+\dots+z_3z_4=3</math>, and <math>B=(4i)^2\left(\overline{z}_1\,\overline{z}_2+\overline{z}_1\,\overline{z}_3+\dots+\overline{z}_3\,\overline{z}_4\right).</math>
Line 17: Line 17:
  
 
Our answer is <math>B+D=256-48=\boxed{(\textbf{D}) \: 208}.</math>
 
Our answer is <math>B+D=256-48=\boxed{(\textbf{D}) \: 208}.</math>
 +
 +
~kingofpineapplz
 +
 +
== Solution 2 ==
 +
Because all coefficients of <math>P \left( z \right)</math> are real, <math>\bar z_1</math>, <math>\bar z_2</math>, <math>\bar z_3</math>, and <math>\bar z_4</math> are four zeros of <math>P \left( z \right)</math>.
 +
 +
First, we compute <math>B</math>.
 +
 +
For <math>P \left( z \right)</math>, following from Vieta's formula,
 +
<cmath>
 +
\[
 +
3 = \bar z_1 \bar z_2 + \bar z_1 \bar z_3 + \bar z_1 \bar z_4 + \bar z_2 \bar z_3 + \bar z_2 \bar z_4 + \bar z_3 \bar z_4 .
 +
\]
 +
</cmath>
 +
 +
For <math>Q \left( z \right)</math>, following from Vieta's formula,
 +
<cmath>
 +
\begin{align*}
 +
B & = f \left( z_1 \right) f \left( z_2 \right)
 +
+ f \left( z_1 \right) f \left( z_3 \right)
 +
+ f \left( z_1 \right) f \left( z_4 \right)
 +
+ f \left( z_2 \right) f \left( z_3 \right)
 +
+ f \left( z_2 \right) f \left( z_4 \right)
 +
+ f \left( z_3 \right) f \left( z_4 \right) \\
 +
& = \left( 4 i \right)^2 \left( \bar z_1 \bar z_2 + \bar z_1 \bar z_3 + \bar z_1 \bar z_4 + \bar z_2 \bar z_3 + \bar z_2 \bar z_4 + \bar z_3 \bar z_4 \right) \\
 +
& = - 16 \cdot 3 \\
 +
& = - 48 .
 +
\end{align*}
 +
</cmath>
 +
 +
Second, we compute <math>D</math>.
 +
 +
For <math>P \left( z \right)</math>, following from Vieta's formula,
 +
<cmath>
 +
\[
 +
1 = \bar z_1 \bar z_2 \bar z_3 \bar z_4  .
 +
\]
 +
</cmath>
 +
 +
For <math>Q \left( z \right)</math>, following from Vieta's formula,
 +
<cmath>
 +
\begin{align*}
 +
D & = f \left( z_1 \right) f \left( z_2 \right) f \left( z_3 \right) f \left( z_4 \right) \\
 +
& = \left( 4 i \right)^4 \bar z_1 \bar z_2 \bar z_3 \bar z_4 \\
 +
& = 256 \cdot 1 \\
 +
& = 256 .
 +
\end{align*}
 +
</cmath>
 +
 +
Therefore, <math>B + D = - 48 + 256 = 208</math>.
 +
 +
Therefore, the answer is <math>\boxed{\textbf{(D) }208}</math>.
 +
 +
~Steven Chen (www.professorchenedu.com)
  
  
~kingofpineapplz
 
  
  

Revision as of 20:48, 25 November 2021

Problem 15

Recall that the conjugate of the complex number $w = a + bi$, where $a$ and $b$ are real numbers and $i = \sqrt{-1}$, is the complex number $\overline{w} = a - bi$. For any complex number $z$, let $f(z) = 4i\hspace{1pt}\overline{z}$. The polynomial \[P(z) = z^4 + 4z^3 + 3z^2 + 2z + 1\] has four complex roots: $z_1$, $z_2$, $z_3$, and $z_4$. Let \[Q(z) = z^4 + Az^3 + Bz^2 + Cz + D\] be the polynomial whose roots are $f(z_1)$, $f(z_2)$, $f(z_3)$, and $f(z_4)$, where the coefficients $A,$ $B,$ $C,$ and $D$ are complex numbers. What is $B + D?$

$(\textbf{A})\: {-}304\qquad(\textbf{B}) \: {-}208\qquad(\textbf{C}) \: 12i\qquad(\textbf{D}) \: 208\qquad(\textbf{E}) \: 304$

Solution 1

By Vieta's formulas, $z_1z_2+z_1z_3+\dots+z_3z_4=3$, and $B=(4i)^2\left(\overline{z}_1\,\overline{z}_2+\overline{z}_1\,\overline{z}_3+\dots+\overline{z}_3\,\overline{z}_4\right).$


Since $\overline{a}\overline{b}=\overline{ab},$ \[B=(4i)^2\left(\overline{z_1z_2}+\overline{z_1z_3}+\overline{z_1z_4}+\overline{z_2z_3}+\overline{z_2z_4}+\overline{z_3z_4}\right).\] Since $\overline{a}+\overline{b}=\overline{a+b},$ \[B=(4i)^2\overline{\left(z_1z_2+z_1z_3+\dots+z_3z_4\right)}=-16\overline{(3)}=-48\]

Also, $z_1z_2z_3z_4=1,$ and \[D=(4i)^4\left(\overline{z}_1\,\overline{z}_2\,\overline{z}_3\,\overline{z}_4\right)=256\overline{\left(z_1z_2z_3z_4\right)}=256\overline{(1)}=256.\]

Our answer is $B+D=256-48=\boxed{(\textbf{D}) \: 208}.$

~kingofpineapplz

Solution 2

Because all coefficients of $P \left( z \right)$ are real, $\bar z_1$, $\bar z_2$, $\bar z_3$, and $\bar z_4$ are four zeros of $P \left( z \right)$.

First, we compute $B$.

For $P \left( z \right)$, following from Vieta's formula, \[ 3 = \bar z_1 \bar z_2 + \bar z_1 \bar z_3 + \bar z_1 \bar z_4 + \bar z_2 \bar z_3 + \bar z_2 \bar z_4 + \bar z_3 \bar z_4 . \]

For $Q \left( z \right)$, following from Vieta's formula, \begin{align*} B & = f \left( z_1 \right) f \left( z_2 \right) + f \left( z_1 \right) f \left( z_3 \right) + f \left( z_1 \right) f \left( z_4 \right) + f \left( z_2 \right) f \left( z_3 \right) + f \left( z_2 \right) f \left( z_4 \right) + f \left( z_3 \right) f \left( z_4 \right) \\ & = \left( 4 i \right)^2 \left( \bar z_1 \bar z_2 + \bar z_1 \bar z_3 + \bar z_1 \bar z_4 + \bar z_2 \bar z_3 + \bar z_2 \bar z_4 + \bar z_3 \bar z_4 \right) \\ & = - 16 \cdot 3 \\ & = - 48 . \end{align*}

Second, we compute $D$.

For $P \left( z \right)$, following from Vieta's formula, \[ 1 = \bar z_1 \bar z_2 \bar z_3 \bar z_4  . \]

For $Q \left( z \right)$, following from Vieta's formula, \begin{align*} D & = f \left( z_1 \right) f \left( z_2 \right) f \left( z_3 \right) f \left( z_4 \right) \\ & = \left( 4 i \right)^4 \bar z_1 \bar z_2 \bar z_3 \bar z_4 \\ & = 256 \cdot 1 \\ & = 256 . \end{align*}

Therefore, $B + D = - 48 + 256 = 208$.

Therefore, the answer is $\boxed{\textbf{(D) }208}$.

~Steven Chen (www.professorchenedu.com)



See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png