Difference between revisions of "Isoperimetric Inequalities"

(add)
Line 13: Line 13:
  
 
[[Category:Geometry]]
 
[[Category:Geometry]]
[[Category:Inequality]]
+
[[Category:Geometric Inequalities]]
[[Category:Theorems]]
 

Revision as of 15:42, 29 December 2021

Isoperimetric Inequalities are inequalities concerning the area of a figure with a given perimeter. They were worked on extensively by Lagrange.

If a figure in a plane has area $A$ and perimeter $P$ then $\frac{4\pi A}{P^2} \leq 1$. This means that given a perimeter $P$ for a plane figure, the circle has the largest area. Conversely, of all plane figures with area $A$, the circle has the least perimeter.

Note that due to this inequality, it is impossible to have a figure with infinite volume yet finite surface area.

See also