Difference between revisions of "2006 AMC 10B Problems/Problem 8"

m (proofreading)
(Solution)
 
(10 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
A square of area 40 is inscribed in a semicircle as shown. What is the area of the semicircle?  
+
A square of area 40 is inscribed in a semicircle as shown. What is the area of the semicircle?
  
[[Image:2006amc10b08.gif]]
+
<asy>
 +
defaultpen(linewidth(0.8)); size(100);
 +
real r=sqrt(50), s=sqrt(10);
 +
draw(Arc(origin, r, 0, 180));
 +
draw((r,0)--(-r,0), dashed);
 +
draw((-s,0)--(s,0)--(s,2*s)--(-s,2*s)--cycle);
 +
</asy>
  
<math> \mathrm{(A) \ } 20\pi\qquad \mathrm{(B) \ } 25\pi\qquad \mathrm{(C) \ } 30\pi\qquad \mathrm{(D) \ } 40\pi\qquad \mathrm{(E) \ } 50\pi </math>
+
<math> \textbf{(A) } 20\pi\qquad \textbf{(B) } 25\pi\qquad \textbf{(C) } 30\pi\qquad \textbf{(D) } 40\pi\qquad \textbf{(E) } 50\pi </math>
  
 
== Solution ==
 
== Solution ==
Since the area of the square is <math>40</math>, the length of the side is <math>\sqrt{40}=2\sqrt{10}</math>.
+
Since the area of the square is <math>40</math>, the length of a side is <math>\sqrt{40}=2\sqrt{10}</math>. The distance between the center of the semicircle and one of the bottom vertices of the square is half the length of the side, which is <math>\sqrt{10}</math>.
The distance between the center of the semicircle and one of the bottom vertecies of the square is half the length of the side, which is <math>\sqrt{10}</math>.
 
  
Using the Pythagorean Theorem to find the square of radius:
+
Using the [[Pythagorean Theorem]] to find the radius <math>r</math> of the semicircle, <math>r^2 = (2\sqrt{10})^2 + (\sqrt{10})^2 = 50</math>. So, the area of the semicircle is <math>\frac{1}{2}\cdot \pi \cdot 50 = \boxed{\textbf{(B) }25\pi}</math>.
  
<math>(2\sqrt{10})^2 + (\sqrt{10})^2 = r^2 </math>
+
== See Also ==
 
+
{{AMC10 box|year=2006|ab=B|num-b=7|num-a=9}}
<math>50=r^2</math>
 
 
 
So, the area of the semicircle is <math>\frac{1}{2}\cdot \pi \cdot 50 = 25\pi \Rightarrow B </math>
 
  
== See Also ==
+
[[Category:Introductory Geometry Problems]]
*[[2006 AMC 10B Problems]]
+
[[Category:Area Problems]]
 +
[[Category:Circle Problems]]
 +
{{MAA Notice}}

Latest revision as of 12:49, 26 January 2022

Problem

A square of area 40 is inscribed in a semicircle as shown. What is the area of the semicircle?

[asy] defaultpen(linewidth(0.8)); size(100); real r=sqrt(50), s=sqrt(10); draw(Arc(origin, r, 0, 180)); draw((r,0)--(-r,0), dashed); draw((-s,0)--(s,0)--(s,2*s)--(-s,2*s)--cycle); [/asy]

$\textbf{(A) } 20\pi\qquad \textbf{(B) } 25\pi\qquad \textbf{(C) } 30\pi\qquad \textbf{(D) } 40\pi\qquad \textbf{(E) } 50\pi$

Solution

Since the area of the square is $40$, the length of a side is $\sqrt{40}=2\sqrt{10}$. The distance between the center of the semicircle and one of the bottom vertices of the square is half the length of the side, which is $\sqrt{10}$.

Using the Pythagorean Theorem to find the radius $r$ of the semicircle, $r^2 = (2\sqrt{10})^2 + (\sqrt{10})^2 = 50$. So, the area of the semicircle is $\frac{1}{2}\cdot \pi \cdot 50 = \boxed{\textbf{(B) }25\pi}$.

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png