Difference between revisions of "1972 AHSME Problems/Problem 11"

m
(Solution)
Line 4: Line 4:
 
<math>\textbf{(A) }4\text{ only}\qquad \textbf{(B) }-7,~4\qquad \textbf{(C) }0,~4\qquad \textbf{(D) }\text{no }y\qquad  \textbf{(E) }\text{all }y</math>
 
<math>\textbf{(A) }4\text{ only}\qquad \textbf{(B) }-7,~4\qquad \textbf{(C) }0,~4\qquad \textbf{(D) }\text{no }y\qquad  \textbf{(E) }\text{all }y</math>
 
==Solution==
 
==Solution==
<math>\fbox{A}</math>
+
 
 +
Because x<sup>2</sup> + y<sup>2</sup> + 16 = 0 has no real solutions, &#8704; sets containing x<sup>2</sup> + y<sup>2</sup> + 16 = 0, no real solutions may exist.
 +
 
 +
– TylerO_1.618
 +
 
 +
&#8756; the solution is <math>\fbox{E}</math>

Revision as of 13:34, 4 February 2022

Problem

The value(s) of $y$ for which the following pair of equations $x^2+y^2+16=0\text{ and }x^2-3y+12=0$ may have a real common solution, are

$\textbf{(A) }4\text{ only}\qquad \textbf{(B) }-7,~4\qquad \textbf{(C) }0,~4\qquad \textbf{(D) }\text{no }y\qquad  \textbf{(E) }\text{all }y$

Solution

Because x2 + y2 + 16 = 0 has no real solutions, ∀ sets containing x2 + y2 + 16 = 0, no real solutions may exist.

– TylerO_1.618

∴ the solution is $\fbox{E}$