Difference between revisions of "2022 AIME I Problems/Problem 12"
Oxymoronic15 (talk | contribs) m |
|||
Line 16: | Line 16: | ||
Let <math>\frac{S_{2022}}{S_{2021}} = \frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find the remainder when <math>p + q</math> is divided by | Let <math>\frac{S_{2022}}{S_{2021}} = \frac{p}{q}</math>, where <math>p</math> and <math>q</math> are relatively prime positive integers. Find the remainder when <math>p + q</math> is divided by | ||
1000. | 1000. | ||
+ | |||
+ | ==Solution== | ||
+ | For each element <math>i</math>, denote <math>x_i = \left( x_{i, A}, x_{i, B} \right) \in \left\{ 0 , 1 \right\}^2</math>, where <math>x_{i, A} = \Bbb I \left\{ i \in A \right\}</math> (resp. <math>x_{i, B} = \Bbb I \left\{ i \in B \right\}</math>). | ||
+ | |||
+ | Denote <math>\Omega = \left\{ (x_1, \cdots , x_n): \sum_{i = 1}^n x_{i, A} = \sum_{i = 1}^n x_{i, B} \right\}</math>. | ||
+ | |||
+ | Denote <math>\Omega_{-j} = \left\{ (x_1, \cdots , x_{j-1} , x_{j+1} , \cdots , x_n): \sum_{i \neq j} x_{i, A} = \sum_{i \neq j} x_{i, B} \right\}</math>. | ||
+ | |||
+ | Hence, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | S_n & = \sum_{(x_1, \cdots , x_n) \in \Omega} \sum_{i = 1}^n \Bbb I \left\{ x_{i, A} = x_{i, B} = 1 \right\} \ | ||
+ | & = \sum_{i = 1}^n \sum_{(x_1, \cdots , x_n) \in \Omega} \Bbb I \left\{ x_{i, A} = x_{i, B} = 1 \right\} \ | ||
+ | & = \sum_{i = 1}^n \sum_{(x_1, \cdots , x_{i-1} , x_{i+1} , \cdots , x_n) \in \Omega_{-i}} 1 | ||
+ | \ | ||
+ | & = \sum_{i = 1}^n \sum_{j=0}^{n-1} \left( \binom{n-1}{j} \right)^2 \ | ||
+ | & = n \sum_{j=0}^{n-1} \left( \binom{n-1}{j} \right)^2 \ | ||
+ | & = n \sum_{j=0}^{n-1} \binom{n-1}{j} \binom{n-1}{n-1-j} \ | ||
+ | & = n \binom{2n-2}{n-1} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Therefore, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \frac{S_{2022}}{S_{2021}} | ||
+ | & = \frac{2022 \binom{4042}{2021}}{2021 \binom{4040}{2020}} \ | ||
+ | & = \frac{4044 \cdot 4041}{2021^2} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | This is in the lowest term. | ||
+ | Therefore, modulo 1000, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | p + q | ||
+ | & \equiv 4044 \cdot 4041 + 2021^2 \ | ||
+ | & \equiv 44 \cdot 41 + 21^2 \ | ||
+ | & \equiv \boxed{\textbf{(245) }} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | ~Steven Chen (www.professorchenedu.com) |
Revision as of 23:01, 17 February 2022
Problem
For any finite set , let denote the number of elements in . Define where the sum is taken over all ordered pairs such that and are subsets of with . For example, because the sum is taken over the pairs of subsets giving . Let , where and are relatively prime positive integers. Find the remainder when is divided by 1000.
Solution
For each element , denote , where (resp. ).
Denote .
Denote .
Hence,
Therefore,
This is in the lowest term. Therefore, modulo 1000,
~Steven Chen (www.professorchenedu.com)