Difference between revisions of "2021 IMO Problems/Problem 3"
(→Problem) |
(→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
+ | [[File:2021 IMO 3.png|450px|right]] | ||
<i><b>Lemma</b></i> | <i><b>Lemma</b></i> | ||
Let <math>AK</math> be bisector of the triangle <math>ABC</math>, point <math>D</math> lies on <math>AK.</math> The point <math>E</math> on the segment <math>AC</math> satisfies <math>\angle ADE= \angle BCD</math>. The point <math>E'</math> is symmetric to <math>E</math> with respect to <math>AK.</math> The point <math>L</math> on the segment <math>AK</math> satisfies <math>E'L||BC.</math> | Let <math>AK</math> be bisector of the triangle <math>ABC</math>, point <math>D</math> lies on <math>AK.</math> The point <math>E</math> on the segment <math>AC</math> satisfies <math>\angle ADE= \angle BCD</math>. The point <math>E'</math> is symmetric to <math>E</math> with respect to <math>AK.</math> The point <math>L</math> on the segment <math>AK</math> satisfies <math>E'L||BC.</math> | ||
Then <math>EL</math> and <math>BC</math> are antiparallel with respect to the sides of an angle <math>A</math> and <cmath>\frac {AL}{DL} = \frac {AK \cdot DK}{BK \cdot KC}.</cmath> | Then <math>EL</math> and <math>BC</math> are antiparallel with respect to the sides of an angle <math>A</math> and <cmath>\frac {AL}{DL} = \frac {AK \cdot DK}{BK \cdot KC}.</cmath> | ||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | Symmetry of points <math>E</math> and <math>E'</math> with respect bisector <math>AK</math> implies <math>\angle AEL = \angle AE'L.</math> | ||
+ | <cmath>\angle DCK = \angle E'DL, \angle DKC = \angle E'LD \implies \triangle DCK \sim \triangle E'DL \implies \frac {E'L}{KD}= \frac {DL}{KC}.</cmath> | ||
+ | <cmath>\triangle ALE' \sim \triangle AKB \implies \frac {E'L}{BK}= \frac {AL}{AK}\implies \frac {AL}{DL} = \frac {AK \cdot DK}{BK \cdot KC}.</cmath> | ||
==Video solution== | ==Video solution== | ||
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems] | https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems] |
Revision as of 19:43, 9 July 2022
Problem
Let be an interior point of the acute triangle with so that . The point on the segment satisfies , the point on the segment satisfies , and the point on the line satisfies . Let and be the circumcentres of the triangles and respectively. Prove that the lines , , and are concurrent.
Solution
Lemma
Let be bisector of the triangle , point lies on The point on the segment satisfies . The point is symmetric to with respect to The point on the segment satisfies Then and are antiparallel with respect to the sides of an angle and Proof
Symmetry of points and with respect bisector implies
Video solution
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems]