Difference between revisions of "2015 AMC 10B Problems/Problem 11"

(Created page with "==Problem== Among the positive integers less than 100, each of whose digits is a prime number, one is selected at random. What is the probability that the selected number is p...")
 
(Video Solution)
 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Among the positive integers less than 100, each of whose digits is a prime number, one is selected at random. What is the probability that the selected number is prime?
+
Among the positive integers less than <math>100</math>, each of whose digits is a prime number, one is selected at random. What is the probability that the selected number is prime?
  
 
<math>\textbf{(A)} \dfrac{8}{99}\qquad \textbf{(B)} \dfrac{2}{5}\qquad \textbf{(C)} \dfrac{9}{20}\qquad \textbf{(D)} \dfrac{1}{2}\qquad \textbf{(E)} \dfrac{9}{16}</math>
 
<math>\textbf{(A)} \dfrac{8}{99}\qquad \textbf{(B)} \dfrac{2}{5}\qquad \textbf{(C)} \dfrac{9}{20}\qquad \textbf{(D)} \dfrac{1}{2}\qquad \textbf{(E)} \dfrac{9}{16}</math>
  
==Solution==
+
==Solution 1==
The one digit prime numbers are <math>2</math>, <math>3</math>, <math>5</math>, and <math>7</math>. So there are a total of <math>4*4=16</math> ways to choose a two digit number with both digits as primes and 4 ways to choose a one digit prime, for a total of <math>4+16=20</math> ways. Out of these <math>2</math>, <math>3</math>, <math>5</math>, <math>7</math>, <math>23</math>, <math>37</math>, <math>53</math>, and <math>73</math> are prime. Thus the probability is <math>\dfrac{8}{20}=\boxed{\textbf{(B)} \dfrac{2}{5}}</math>.
+
The one digit prime numbers are <math>2</math>, <math>3</math>, <math>5</math>, and <math>7</math>. So there are a total of <math>4\cdot4=16</math> ways to choose a two digit number with both digits as primes and <math>4</math> ways to choose a one digit prime, for a total of <math>4+16=20</math> ways. Out of these <math>2</math>, <math>3</math>, <math>5</math>, <math>7</math>, <math>23</math>, <math>37</math>, <math>53</math>, and <math>73</math> are prime. Thus the probability is <math>\dfrac{8}{20}=\boxed{\textbf{(B)} \dfrac{2}{5}}</math>.
 +
 
 +
==Solution 2 (Listing)==
 +
Since the only primes digits are <math>2</math>, <math>3</math>, <math>5</math>, and <math>7</math>, it doesn't seem too hard to list all of the numbers out.
 +
 
 +
*2- Prime;
 +
*3- Prime;
 +
*5- Prime;
 +
*7- Prime;
 +
*22- Composite;
 +
*23- Prime;
 +
*25- Composite;
 +
*27- Composite;
 +
*32- Composite;
 +
*33- Composite;
 +
*35- Composite;
 +
*37- Prime;
 +
*52- Composite;
 +
*53- Prime;
 +
*55- Composite;
 +
*57- Composite;
 +
*72- Composite;
 +
*73- Prime;
 +
*75- Composite;
 +
*77- Composite.
 +
 
 +
Counting it out, there are <math>20</math> cases and <math>8</math> of these are prime. So the answer is <math>\dfrac{8}{20}=\boxed{\textbf{(B)} \dfrac{2}{5}}</math>.
 +
~JH. L
 +
 
 +
==Video Solution 1==
 +
https://youtu.be/RZDFs3qrw7Y
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==Video Solution==
 +
https://youtu.be/cL9wo9kcOGg
 +
 
 +
~savannahsolver
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2015|ab=B|num-b=10|num-a=12}}
 
{{AMC10 box|year=2015|ab=B|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 16:13, 2 August 2022

Problem

Among the positive integers less than $100$, each of whose digits is a prime number, one is selected at random. What is the probability that the selected number is prime?

$\textbf{(A)} \dfrac{8}{99}\qquad \textbf{(B)} \dfrac{2}{5}\qquad \textbf{(C)} \dfrac{9}{20}\qquad \textbf{(D)} \dfrac{1}{2}\qquad \textbf{(E)} \dfrac{9}{16}$

Solution 1

The one digit prime numbers are $2$, $3$, $5$, and $7$. So there are a total of $4\cdot4=16$ ways to choose a two digit number with both digits as primes and $4$ ways to choose a one digit prime, for a total of $4+16=20$ ways. Out of these $2$, $3$, $5$, $7$, $23$, $37$, $53$, and $73$ are prime. Thus the probability is $\dfrac{8}{20}=\boxed{\textbf{(B)} \dfrac{2}{5}}$.

Solution 2 (Listing)

Since the only primes digits are $2$, $3$, $5$, and $7$, it doesn't seem too hard to list all of the numbers out.

  • 2- Prime;
  • 3- Prime;
  • 5- Prime;
  • 7- Prime;
  • 22- Composite;
  • 23- Prime;
  • 25- Composite;
  • 27- Composite;
  • 32- Composite;
  • 33- Composite;
  • 35- Composite;
  • 37- Prime;
  • 52- Composite;
  • 53- Prime;
  • 55- Composite;
  • 57- Composite;
  • 72- Composite;
  • 73- Prime;
  • 75- Composite;
  • 77- Composite.

Counting it out, there are $20$ cases and $8$ of these are prime. So the answer is $\dfrac{8}{20}=\boxed{\textbf{(B)} \dfrac{2}{5}}$. ~JH. L

Video Solution 1

https://youtu.be/RZDFs3qrw7Y

~Education, the Study of Everything

Video Solution

https://youtu.be/cL9wo9kcOGg

~savannahsolver

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png