Difference between revisions of "2008 AIME I Problems/Problem 3"

(Solution)
Line 18: Line 18:
  
 
When readdressing the first equation, we see that if <math>2x+3y</math> will be a multiple of <math>6</math>, <math>4z \equiv 2 \pmod{6} = 5</math>, we get that <math>x=15</math> and <math>y=8</math>, which works because of integer values. Therefore, <math>225+64+25=\boxed{314}</math>
 
When readdressing the first equation, we see that if <math>2x+3y</math> will be a multiple of <math>6</math>, <math>4z \equiv 2 \pmod{6} = 5</math>, we get that <math>x=15</math> and <math>y=8</math>, which works because of integer values. Therefore, <math>225+64+25=\boxed{314}</math>
 +
 +
=== Solution 4 (Logic) ===
 +
Building on top of Solution 3, we can add <math>j+s-2b=17</math> and <math>2b+3j+4s=74</math> (sorry, I used different variables) to get <math>4j+5s=57</math>. Logically speaking, most athletic people swim a lot faster than 1 km/h (0.62 mph), so we test out the next case that works, which is 5 km/h (3.1 mph). This seems much more logical, so we plug it into the equation to get <math>4j+25=57\implies j=8</math>. This seems reasonable, as people usually jog at around 8 to 16 km/h. Plugging these values into <math>2b+3j+4s=74</math>, we get <math>b=15</math>. 15 km/h is a little slow (most people bike at 20 km/h), but is still reasonable. So, we get <math>5^2+8^2+15^2=\boxed{314}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 17:44, 6 August 2022

Problem

Ed and Sue bike at equal and constant rates. Similarly, they jog at equal and constant rates, and they swim at equal and constant rates. Ed covers $74$ kilometers after biking for $2$ hours, jogging for $3$ hours, and swimming for $4$ hours, while Sue covers $91$ kilometers after jogging for $2$ hours, swimming for $3$ hours, and biking for $4$ hours. Their biking, jogging, and swimming rates are all whole numbers of kilometers per hour. Find the sum of the squares of Ed's biking, jogging, and swimming rates.

Solution

Solution 1

Let the biking rate be $b$, swimming rate be $s$, jogging rate be $j$, all in km/h.

We have $2b + 3j + 4s = 74,2j + 3s + 4b = 91$. Subtracting the second from twice the first gives $4j + 5s = 57$. Mod 4, we need $s\equiv1\pmod{4}$. Thus, $(j,s) = (13,1),(8,5),(3,9)$.

$(13,1)$ and $(3,9)$ give non-integral $b$, but $(8,5)$ gives $b = 15$. Thus, our answer is $15^{2} + 8^{2} + 5^{2} = \boxed{314}$.

Solution 2

Let $b$, $j$, and $s$ be the biking, jogging, and swimming rates of the two people. Hence, $2b + 3j + 4s = 74$ and $4b + 2j + 3s = 91$. Subtracting gives us that $2b - j - s = 17$. Adding three times this to the first equation gives that $8b + s = 125\implies b\le 15$. Adding four times the previous equation to the first given one gives us that $10b - j = 142\implies b > 14\implies b\ge 15$. This gives us that $b = 15$, and then $j = 8$ and $s = 5$. Therefore, $b^2 + s^2 + j^2 = 225 + 64 + 25 = \boxed{314}$.

Solution 3

Creating two systems, we get $2x+3y+4z=74$, and $2y+3z+4x=91$. Subtracting the two expressions we get $y+z-2x=-17$. Note that $-17$ is odd, so one of $x,y,z$ is odd. We see from our second expression that $z$ must be odd, because $91$ is also odd and $2y$ and $4x$ are odd. Thus, with this information, we can test cases quickly:

When readdressing the first equation, we see that if $2x+3y$ will be a multiple of $6$, $4z \equiv 2 \pmod{6} = 5$, we get that $x=15$ and $y=8$, which works because of integer values. Therefore, $225+64+25=\boxed{314}$

Solution 4 (Logic)

Building on top of Solution 3, we can add $j+s-2b=17$ and $2b+3j+4s=74$ (sorry, I used different variables) to get $4j+5s=57$. Logically speaking, most athletic people swim a lot faster than 1 km/h (0.62 mph), so we test out the next case that works, which is 5 km/h (3.1 mph). This seems much more logical, so we plug it into the equation to get $4j+25=57\implies j=8$. This seems reasonable, as people usually jog at around 8 to 16 km/h. Plugging these values into $2b+3j+4s=74$, we get $b=15$. 15 km/h is a little slow (most people bike at 20 km/h), but is still reasonable. So, we get $5^2+8^2+15^2=\boxed{314}$.

See also

2008 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png