Akaike, H.: A new look at the statistical model identification, IEEE
T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
a

ASI: ÖNORM B 1991-1-3:2018 12 01, Austrian Standards Institute, Vienna,
Austria, 2018. a, b, c, d, e

Auer, I., Böhm, R., Jurkovic, A., Lipa, W., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Matulla, C., Briffa, K., Jones, P., Efthymiadis, D., Brunetti, M., Nanni, T., Maugeri, M., Mercalli, L., Mestre, O., Moisselin, J.-M., Begert, M., Müller-Westermeier, G., Kveton, V., Bochnicek, O., Stastny, P., Lapin, M., Szalai, S., Szentimrey, T., Cegnar, T., Dolinar, M., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., and Nieplova, E.: HISTALP – historical instrumental climatological surface time series of the Greater Alpine Region, Int. J. Climatol., 27, 17–46, https://doi.org/10.1002/joc.1377, 2006. a

Autonome Provinz Bozen Südtirol: Dekret des Landeshauptmanns vom 6. Mai 2002, Nr. 14, available at: http://lexbrowser.provinz.bz.it/doc/de/dpgp-2002-14/dekret_des_landeshauptmanns_vom_6_mai_2002_nr_14
(last access date: 28 July 2021), 2002. a

Blanchet, J. and Lehning, M.: Mapping snow depth return levels: smooth spatial modeling versus station interpolation, Hydrol. Earth Syst. Sci., 14, 2527–2544, https://doi.org/10.5194/hess-14-2527-2010, 2010. a, b

CEN: EN 1991-1-3:2003/A1:2015, European Committee for Standardization, Brussels, Belgium, 2015. a, b, c, d, e, f, g, h

CEN: SC1.T2; N 1469; Final Draft EN 1991-1-3 “Snow Loads”, European Committee for Standardization, Brussels, Belgium, 2020. a, b, c, d

Coles, S.: An Introduction to Statistical Modeling of Extreme Values, in: Springer Series in Statistics, Springer-Verlag, London, https://doi.org/10.1007/978-1-4471-3675-0, 2001. a

Croce, P., Formichi, P., Landi, F., Mercogliano, P., Bucchignani, E., Dosio,
A., and Dimova, S.: The snow load in Europe and the climate change, Clim.
Risk Manage., 20, 138–154, https://doi.org/10.1016/j.crm.2018.03.001, 2018. a

Croce, P., Formichi, P., Landi, F., and Marsili, F.: Harmonized European ground snow load map: Analysis and comparison of national provisions, Cold
Reg. Sci. Technol., 168, 102875, https://doi.org/10.1016/j.coldregions.2019.102875, 2019. a

DeBock, D. J., Liel, A. B., Harris, J. R., Ellingwood, B. R., and Torrents, J. M.: Reliability-Based Design Snow Loads. I: Site-Specific Probability
Models for Ground Snow Loads, J. Struct. Eng., 143, 04017046, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001731, 2017. a

DIN: DIN EN 1991-1-3/NA:2019-04, Deutsches Institut für Normung e.V.,
Berlin, Germany, 2019. a

Etienne, C., Lehmann, A., Goyette, S., Lopez-Moreno, J.-I., and Beniston, M.:
Spatial Predictions of Extreme Wind Speeds over Switzerland Using Generalized
Additive Models, J. Appl. Meteorol. Clim., 49, 1956–1970, https://doi.org/10.1175/2010JAMC2206.1, 2010. a

Gaume, J., Eckert, N., Chambon, G., Naaim, M., and Bel, L.: Mapping extreme
snowfalls in the French Alps using max-stable processes, Water Resour. Res., 49, 1079–1098, https://doi.org/10.1002/wrcr.20083, 2013. a

Gstöhl, S.: Spatial modeling of extreme snow depth and snow water equivalent, MS thesis, University of Innsbruck, Innsbruck, 2017. a

Guyennon, N., Valt, M., Salerno, F., Petrangeli, A. B., and Romano, E.:
Estimating the snow water equivalent from snow depth measurements in the Italian Alps, Cold Reg. Sci. Technol., 167, 102859,
https://doi.org/10.1016/j.coldregions.2019.102859, 2019. a

Haan, L. D.: A Spectral Representation for Max-stable Processes, Ann. Probabil., 12, 1194–1204, https://doi.org/10.1214/aop/1176993148, 1984. a

Hastie, T. J. and Tibshirani, R. J.: Generalized Additive Models, CRC Press,
London, 1990. a

Hong, H. P. and Ye, W.: Analysis of extreme ground snow loads for Canada
using snow depth records, Nat. Hazards, 73, 355–371, https://doi.org/10.1007/s11069-014-1073-z, 2014. a

Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent
from snow depth measurements in the Swiss Alps, J. Hydrol., 378, 161–167, https://doi.org/10.1016/j.jhydrol.2009.09.021, 2009. a

Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical
SNOWPACK model for the Swiss Avalanche Warning Services. Part II: Snow Microstructure, Cold Reg. Sci. Technol., 35, 147–167, https://doi.org/10.1016/S0165-232X(02)00073-3, 2002. a

Le Roux, E., Evin, G., Eckert, N., Blanchet, J., and Morin, S.: Non-stationary extreme value analysis of ground snow loads in the French Alps: a comparison with building standards, Nat. Hazards Earth Syst. Sci., 20, 2961–2977, https://doi.org/10.5194/nhess-20-2961-2020, 2020. a, b, c, d

Marty, C. and Blanchet, J.: Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics, Climatic Change, 111, 705–721, https://doi.org/10.1007/s10584-011-0159-9, 2012. a

Mo, H. M., Dai, L. Y., Fan, F., Che, T., and Hong, H. P.: Extreme snow hazard
and ground snow load for China, Nat. Hazards, 84, 2095–2120, https://doi.org/10.1007/s11069-016-2536-1, 2016. a

Nicolet, G., Eckert, N., Morin, S., and Blanchet, J.: Assessing Climate Change Impact on the Spatial Dependence of Extreme Snow Depth Maxima in the French Alps, Water Resour. Res., 54, 7820–7840, https://doi.org/10.1029/2018WR022763,
2018. a

Olefs, M., Schöner, W., Suklitsch, M., Wittmann, C., Niedermoser, B.,
Neururer, A., and Wurzer, A.: SNOWGRID – A New Operational Snow Cover Model in Austria, in: International snow science workshop proceedings 2013, Grenoble – Chamonix Mont Blanc, France, 38–45, available at:
https://arc.lib.montana.edu/snow-science/item/1785 (last access: 28 July 2021), 2013. a

Olefs, M., Girstmair, A., Hiebl, J., Koch, R., and Schöner, W.: An area-wide snow climatology for Austria since 1961 based on newly available daily precipitation and air temperature grids, in: Geophysical Research
Abstracts, vol. 19, EGU, Vienna, Austria, EGU2017–12249, 2017. a

ON: ÖNORM B 4013:1983 12 01, Österreichisches Normungsinstitut, Vienna, Austria, 1983. a

ON: ÖNORM B 1991-1-3:2006 04 01, Österreichisches Normungsinstitut,
Vienna, Austria, 2006. a

Perčec Tadić, M., Zaninović, K., and Sokol Jurković, R.:
Mapping of maximum snow load values for the 50-year return period for Croatia, Spat. Statist., 14, 53–69, https://doi.org/10.1016/j.spasta.2015.05.002, 2015. a

Saeb, A.: gnFit: Goodness of Fit Test for Continuous Distribution Functions,
r package version 0.2.0, available at: https://CRAN.R-project.org/package=gnFit (last access: 28 July 2021), 2018. a

Sanpaolesi, L., Currie, D., Sims, P., Sacré, C., Stiefel, U., Lozza, S.,
Eiselt, B., Peckham, R., Solomos, G., Holand, I., Sandvik, R., Gränzer, M., König, G., Sukhov, D., del Corso, R., and Formichi, P.: Scientific support activity in the field of structural stability of civil engeneering works – snow loads, Final Report I Contract no. 500269 dated 16 December 1996, Commission of the European communities GDIII – D3,
available at: http://www2.ing.unipi.it/dic/snowloads (last access: 28 July 2021), 1998. a, b

Sanpaolesi, L., Brettle, M., Currie, D., Dillon, P., Sims, P., Delpech, P.,
Dufresne, M., Sacré, C., Stiefel, U., Lozza, S., Eiselt, B., Peckham, R.,
Solomos, G., Holand, I., Leira, B., Sandvik, R., Gränzer, M., König, G., Sukhov, D., del Corso, R., and Formichi, P.: Scientific support activity in the field of structural stability of civil engeneering works – snow loads, Final Report II Contract no. 500990 dated 12 December 1997, Commission
of the European communities GDIII – D3, available at:
http://www2.ing.unipi.it/dic/snowloads (last access: 28 July 2021), 1999. a

Schellander, H. and Hell, T.: Modeling snow depth extremes in Austria, Nat. Hazards, 94, 1367–1389, https://doi.org/10.1007/s11069-018-3481-y, 2018. a, b, c, d, e, f

Schellander, H. and Winkler, M.: niXmass – R package, available at:
https://CRAN.R-project.org/package=nixmass (last access: 28 July 2021), 2020. a

Sezer, A., Kan Kilinc, B., and Yazici, B.: Modeling extreme rainfalls using
generalized additive models for location, scale and shape parameters, Appl.
Ecol. Environ. Res., 14, 635–644, 2016. a

SIA: SIA 261:2020, Schweizerischer Ingenieur- und Architektenverein,
Zurich, Switzerland, 2020. a

Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.:
Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes, J. Hydrometeorol., 11, 1380–1394, https://doi.org/10.1175/2010JHM1202.1, 2010. a

Unterstrasser, S. and Zängl, G.: Cooling by melting precipitation in Alpine valleys: An idealized numerical modelling study, Q. J. Roy. Meteorol. Soc., 132, 1489–1508, https://doi.org/10.1256/qj.05.158, 2006. a

Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J. M.: The detailed snowpack scheme Crocus and its
implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a

Wastl, C. and Zängl, G.: Mountain–valley precipitation differences in the northern Alps: an exemplary high-resolution modeling study, Meteorol. Atmos. Phys., 108, 29–42, https://doi.org/10.1007/s00703-010-0083-y, 2010. a

Winkler, M., Kaufmann, H., Schöner, W., and Kuhn, M.: Schnee- und Eislast, in: ExtremA 2019, Aktueller Wissensstand zu Extremereignissen alpiner Naturgefahren in Österreich, Vienna University Press, Vienna, 2020. a

Winkler, M., Schellander, H., and Gruber, S.: Snow water equivalents
exclusively from snow depths and their temporal changes: the Δsnow model, Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021, 2021a. a, b, c, d, e, f, g

Winkler, M., Schellander, H., Hübner, U., Radlherr, A., and Drechsel, S.:
Schneelast.Reform, Endbericht, ZAMG – Zentralanstalt für Meteorologie
Geodynamik, Innsbruck, Austria, in preparation, 2021b. a

Wood, S. N.: Thin plate regression splines, J. Roy. Stat. Soc. Ser. B, 65, 95–114, https://doi.org/10.1111/1467-9868.00374, 2003. a

Wood, S. N.: Generalized Additive Models: An Introduction with R, 2nd Edn.,
Chapman and Hall/CRC, Boca Raton, 2017. a, b