Difference between revisions of "2018 IMO Problems/Problem 6"

(Solution)
(Solution)
Line 47: Line 47:
 
[[File:2018 IMO 6bb.png|430px|right]]
 
[[File:2018 IMO 6bb.png|430px|right]]
 
[[File:2018 IMO 6c.png|430px|right]]
 
[[File:2018 IMO 6c.png|430px|right]]
 +
[[File:2018 IMO 6d.png|430px|right]]
 
<i><b>Common case </b></i>
 
<i><b>Common case </b></i>
  
Line 69: Line 70:
 
Quadrangle <math>AYCD</math> is cyclic <math>\implies  \angle YAD = \angle BCY.</math>  
 
Quadrangle <math>AYCD</math> is cyclic <math>\implies  \angle YAD = \angle BCY.</math>  
  
The triangles <math>\triangle YAD \sim \triangle YCD</math> by two angles, so <cmath>\frac {BC}{AD} = \frac {CY}{AY} = \frac {BY} {DY}.</cmath>
+
The triangles <math>\triangle YAD \sim \triangle YCD</math> by two angles, so <cmath>\frac {BC}{AD} = \frac {CY}{AY} = \frac {BY} {DY} \hspace{10mm} (1).</cmath>
  
 
The points <math>X</math> and <math>Y</math> are symmetric with respect to the circle <math>\omega</math>, since they lie on the intersection of the circles <math>ACF</math> and <math>ACE</math> symmetric with respect to <math>\omega</math> and the orthogonal <math>\omega</math> circle <math>BDE.</math>
 
The points <math>X</math> and <math>Y</math> are symmetric with respect to the circle <math>\omega</math>, since they lie on the intersection of the circles <math>ACF</math> and <math>ACE</math> symmetric with respect to <math>\omega</math> and the orthogonal <math>\omega</math> circle <math>BDE.</math>
  
 
The point <math>C</math> is symmetric to itself, the point <math>X</math> is symmetric to <math>Y</math> with respect to <math>\omega \implies \frac{CX}{CY} = \frac {R^2}{OC \cdot OY} , \frac {AX}{AY} = \frac {R^2}{OA \cdot OY}.</math>
 
The point <math>C</math> is symmetric to itself, the point <math>X</math> is symmetric to <math>Y</math> with respect to <math>\omega \implies \frac{CX}{CY} = \frac {R^2}{OC \cdot OY} , \frac {AX}{AY} = \frac {R^2}{OA \cdot OY}.</math>
 +
Usung <math>(1)</math> and the equality <math>OA = OC,</math> we get <cmath>\frac{CY}{AY} = \frac {CX}{AX} = \frac{BC}{AD}.</cmath>
 +
The point <math>C</math> is symmetric to itself, the point <math>B</math> is symmetric to <math>D</math> with respect to <math>\omega \implies</math>
 +
<cmath>\triangle OBC \sim \triangle OCD \implies \frac {OB}{OC} = \frac {BC}{CD} = \frac {OC}{OD},</cmath>
 +
<cmath>\frac {OB}{OD} = \frac {OB}{OC} \cdot \frac {OC}{OD} = \frac{BC^2}{CD^2} = \frac{BC}{CD} \cdot \frac {AB}{AD}.</cmath>
 +
The point <math>B</math> is symmetric to <math>D</math> and the point <math>X</math> is symmetric to <math>Y</math> with respect to <math>\omega,</math> hence
 +
<cmath>\frac {BX}{DY} = \frac {R^2}{OD \cdot OY} ,\frac {DX}{BY} = \frac{R^2}{OB \cdot OY}.</cmath>
 +
<cmath>\frac{BX}{DX} =\frac{DY}{BY} \cdot \frac {OB}{OD} = \frac{AD}{BC} \cdot \frac{BC}{CD} \cdot \frac{AB}{AD} = \frac{AB}{CD}.</cmath>
 +
Denote  <math>\angle XAB =  \angle XCD = \alpha,  \angle BXA = \varphi,  \angle DXC = \psi.</math>
 +
 +
By the law of sines for the <math>\triangle ABX,</math> we obtain <math>\frac {AB}{\sin \varphi} = \frac{BX}{\sin \alpha}.</math>

Revision as of 07:56, 19 August 2022

A convex quadrilateral $ABCD$ satisfies $AB\cdot CD=BC \cdot DA.$ Point $X$ lies inside $ABCD$ so that $\angle XAB = \angle XCD$ and $\angle XBC = \angle XDA.$ Prove that $\angle BXA + \angle DXC = 180^{\circ}$

Solution

2018 IMO 6.png
2018 IMO 6 Claim 3.png

Special case

We construct point $X_0$ and prove that $X_0$ coincides with the point $X.$

Let $AD = CD$ and $AB = BC \implies  AB \cdot CD = BC \cdot DA.$

Let $E$ and $F$ be the intersection points of $AB$ and $CD,$ and $BC$ and $DA,$ respectively.

The points $B$ and $D$ are symmetric with respect to the circle $\omega = EACF$ (Claim 1).

The circle $\Omega = FBD$ is orthogonal to the circle $\omega$ (Claim 2).

Let $X_0$ be the point of intersection of the circles $\omega$ and $\Omega.$ Quadrilateral $AX_0CF$ is cyclic $\implies$ \[\angle X_0AB = \frac {1}{2}\overset{\Large\frown} {X_0CE}  =  \frac {1}{2} (360^\circ -\overset{\Large\frown} {X_0AE}) = 180^\circ  - \angle X_0CE = \angle X_0CD.\]

Similarly, quadrangle $DX_0BF$ is cyclic $\implies \angle X_0BC = \angle X_0DA$.

This means that point $X_0$ coincides with the point $X$.

$\hspace{10mm} \angle FCX =  \angle BCX  =  \frac {1}{2} \overset{\Large\frown} {XAF}$ of $\omega.$

$\hspace{10mm} \angle CBX = \angle XDA =  \frac {1}{2} \overset{\Large\frown} {XBF}$ of $\Omega.$

The sum $\overset{\Large\frown} {XAF} + \overset{\Large\frown} {XBF} = 180^\circ$ (Claim 3) $\implies$

$\angle XCB + \angle XBC = 90^\circ \implies \angle CXB = 90^\circ.$

Similarly, $\angle AXD =  90^\circ \implies \angle BXA + \angle DXC = 180^\circ.$

Claim 1 Let $A, C,$ and $E$ be arbitrary points on a circle $\omega, l$ be the middle perpendicular to the segment $AC.$ Then the straight lines $AE$ and $CE$ intersect $l$ at the points $B$ and $D,$ symmetric with respect to $\omega.$

Claim 2 Let points $B$ and $D$ be symmetric with respect to the circle $\omega.$ Then any circle $\Omega$ passing through these points is orthogonal to $\omega.$

Claim 3 The sum of the arcs between the points of intersection of two perpendicular circles is $180^\circ.$ In the figure they are a blue and red arcs $\overset{\Large\frown} {CD}, \alpha + \beta = 180^\circ.$

2018 IMO 6a.png
2018 IMO 6bb.png
2018 IMO 6c.png
2018 IMO 6d.png

Common case

Denote by $O$ the intersection point of the perpendicular bisector of $AC$ and $BD.$ Let $\omega$ be a circle (red) with center $O$ and radius $OA.$

The points $B$ and $D$ are symmetric with respect to the circle $\omega$ (Claim 1).

The circles $BDF$ and $BDE$ are orthogonal to the circle $\omega$ (Claim 2).

Circles $ACF$ and $ACE$ are symmetric with respect to the circle $\omega$ (Lemma).

Denote by $X_0$ the point of intersection of the circles $BDF$ and $ACE.$ Quadrangle $BX_0DF$ is cyclic $\implies \angle X_0BC =  \angle X_0DA$ (see Special case). Similarly, quadrangle $AX_0CE$ is cyclic $\implies \angle X_0AB =  \angle X_0CD = \alpha.$

The required point $X = X_0$ is constructed.

Denote by $Y$ the point of intersection of circles $BDF$ and $ACF.$

Quadrangle $BYDF$ is cyclic $\implies  \angle CBY =  \angle ADY.$

Quadrangle $AYCD$ is cyclic $\implies  \angle YAD = \angle BCY.$

The triangles $\triangle YAD \sim \triangle YCD$ by two angles, so \[\frac {BC}{AD} = \frac {CY}{AY} = \frac {BY} {DY} \hspace{10mm} (1).\]

The points $X$ and $Y$ are symmetric with respect to the circle $\omega$, since they lie on the intersection of the circles $ACF$ and $ACE$ symmetric with respect to $\omega$ and the orthogonal $\omega$ circle $BDE.$

The point $C$ is symmetric to itself, the point $X$ is symmetric to $Y$ with respect to $\omega \implies \frac{CX}{CY} = \frac {R^2}{OC \cdot OY} , \frac {AX}{AY} = \frac {R^2}{OA \cdot OY}.$ Usung $(1)$ and the equality $OA = OC,$ we get \[\frac{CY}{AY} = \frac {CX}{AX} = \frac{BC}{AD}.\] The point $C$ is symmetric to itself, the point $B$ is symmetric to $D$ with respect to $\omega \implies$ \[\triangle OBC \sim \triangle OCD \implies \frac {OB}{OC} = \frac {BC}{CD} = \frac {OC}{OD},\] \[\frac {OB}{OD} = \frac {OB}{OC} \cdot \frac {OC}{OD} = \frac{BC^2}{CD^2} = \frac{BC}{CD} \cdot \frac {AB}{AD}.\] The point $B$ is symmetric to $D$ and the point $X$ is symmetric to $Y$ with respect to $\omega,$ hence \[\frac {BX}{DY} = \frac {R^2}{OD \cdot OY} ,\frac {DX}{BY} = \frac{R^2}{OB \cdot OY}.\] \[\frac{BX}{DX} =\frac{DY}{BY} \cdot \frac {OB}{OD} = \frac{AD}{BC} \cdot \frac{BC}{CD} \cdot \frac{AB}{AD} = \frac{AB}{CD}.\] Denote $\angle XAB =  \angle XCD = \alpha,  \angle BXA = \varphi,   \angle DXC = \psi.$

By the law of sines for the $\triangle ABX,$ we obtain $\frac {AB}{\sin \varphi} = \frac{BX}{\sin \alpha}.$