Difference between revisions of "2019 AMC 12A Problems/Problem 2"
Line 16: | Line 16: | ||
==Solution 4 (similar to Solution 2)== | ==Solution 4 (similar to Solution 2)== | ||
Without loss of generality, let <math>b=2</math>. Then, we have <math>a=3</math> and <math>3b=6</math>. This gives <math>\frac{3b}{a}=\frac{6}{3}=2</math>, so <math>3b</math> is <math>200\%</math> of <math>a</math>, so the answer is <math>\boxed{\textbf{(D) }200\%}</math>. | Without loss of generality, let <math>b=2</math>. Then, we have <math>a=3</math> and <math>3b=6</math>. This gives <math>\frac{3b}{a}=\frac{6}{3}=2</math>, so <math>3b</math> is <math>200\%</math> of <math>a</math>, so the answer is <math>\boxed{\textbf{(D) }200\%}</math>. | ||
+ | |||
+ | ==Video Solution 1== | ||
+ | https://youtu.be/CM2PqoCDvqo | ||
+ | |||
+ | ~Education, the Study of Everything | ||
==See Also== | ==See Also== |
Latest revision as of 17:31, 30 October 2022
Contents
Problem
Suppose is of . What percent of is ?
Solution 1
Since , that means . We multiply by to get a term, yielding , and is of .
Solution 2
Without loss of generality, let . Then, we have and . Thus, , so is of . Hence the answer is .
Solution 3 (similar to Solution 1)
As before, . Multiply by 2 to obtain . Since , the answer is .
Solution 4 (similar to Solution 2)
Without loss of generality, let . Then, we have and . This gives , so is of , so the answer is .
Video Solution 1
~Education, the Study of Everything
See Also
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 1 |
Followed by Problem 3 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.