Difference between revisions of "2007 AMC 10A Problems/Problem 20"

m (Credentials)
(Solution 7 (Answer Choices))
 
(19 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
Suppose that the number <math>a</math> satisfies the equation <math>4 = a + a^{ - 1}</math>. What is the value of <math>a^{4} + a^{ - 4}</math>?
 
Suppose that the number <math>a</math> satisfies the equation <math>4 = a + a^{ - 1}</math>. What is the value of <math>a^{4} + a^{ - 4}</math>?
  
<math>\text{(A)}\ 164 \qquad \text{(B)}\ 172 \qquad \text{(C)}\ 192 \qquad \text{(D)}\ 194 \qquad \text{(E)}\ 212</math>
+
<math>\textbf{(A)}\ 164 \qquad \textbf{(B)}\ 172 \qquad \textbf{(C)}\ 192 \qquad \textbf{(D)}\ 194 \qquad \textbf{(E)}\ 212</math>
  
== Solution 1 (Increases the Powers) ==
+
== Solution 1 (Decreases the Powers) ==
 +
Note that for all real numbers <math>k,</math> we have <math>a^{2k} + a^{-2k} + 2 = (a^{k} + a^{-k})^2,</math> from which <cmath>a^{2k} + a^{-2k} = (a^{k} + a^{-k})^2-2.</cmath> We apply this result twice to get the answer:
 +
<cmath>\begin{align*}
 +
a^4 + a^{-4} &= (a^2 + a^{-2})^2 - 2 \
 +
&= [(a + a^{-1})^2 - 2]^2 - 2 \
 +
&= \boxed{\textbf{(D)}\ 194}.
 +
\end{align*}</cmath>
 +
~Azjps (Fundamental Logic)
 +
 
 +
~MRENTHUSIASM (Reconstruction)
 +
 
 +
== Solution 2 (Increases the Powers) ==
 
Squaring both sides of <math>a+a^{-1}=4</math> gives <math>a^2+a^{-2}+2=16,</math> from which <math>a^2+a^{-2}=14.</math>
 
Squaring both sides of <math>a+a^{-1}=4</math> gives <math>a^2+a^{-2}+2=16,</math> from which <math>a^2+a^{-2}=14.</math>
  
Squaring both sides of <math>a^2+a^{-2}=14</math> gives <math>a^4+a^{-4}+2=196,</math> from which <math>a^4+a^{-4}=\boxed{\text{(D)}\ 194}.</math>
+
Squaring both sides of <math>a^2+a^{-2}=14</math> gives <math>a^4+a^{-4}+2=196,</math> from which <math>a^4+a^{-4}=\boxed{\textbf{(D)}\ 194}.</math>
  
 
~Rbhale12 (Fundamental Logic)
 
~Rbhale12 (Fundamental Logic)
Line 13: Line 24:
 
~MRENTHUSIASM (Reconstruction)
 
~MRENTHUSIASM (Reconstruction)
  
== Solution 2 (Decreases the Powers) ==
+
== Solution 3 (Detailed Explanation of Solution 2) ==
Note that for all real numbers <math>k,</math> we have <math>a^{2k} + a^{-2k} + 2 = \left(a^{k} + a^{-k}\right)^2,</math> from which <cmath>a^{2k} + a^{-2k} = \left(a^{k} + a^{-k}\right)^2-2.</cmath> We apply this result twice to get the answer:
+
The detailed explanation of Solution 2 is as follows:
<cmath>\begin{align*}
+
<cmath>\begin{alignat*}{8}
a^4 + a^{-4} &= \left(a^2 + a^{-2}\right)^2 - 2 \
+
a+a^{-1}&=4 \\
&= \left[\left(a + a^{-1}\right)^2 - 2\right]^2 - 2 \
+
(a+a^{-1})^2&=4^2 \
&= \boxed{\text{(D)}\ 194}.
+
a^2+2aa^{-1}+a^{-2}&=16 \\
\end{align*}</cmath>
+
a^2+a^{-2}&=16-2&&=14 \\
~Azjps (Fundamental Logic)
+
(a^2+a^{-2})^2&=14^2 \\
 +
a^4+2a^2a^{-2}+a^{-4}&=196 \
 +
a^4+a^{-4}&=196-2&&=\boxed{\textbf{(D)}\ 194}. \
 +
\end{alignat*}</cmath>
 +
~MathFun1000 (Solution)
  
~MRENTHUSIASM (Reconstruction)
+
~MRENTHUSIASM (Minor Formatting)
  
== Solution 3 (Binomial Theorem) ==
+
== Solution 4 (Binomial Theorem) ==
 
Squaring both sides of <math>a+a^{-1}=4</math> gives <math>a^2+a^{-2}+2=16,</math> from which <math>a^2+a^{-2}=14.</math>
 
Squaring both sides of <math>a+a^{-1}=4</math> gives <math>a^2+a^{-2}+2=16,</math> from which <math>a^2+a^{-2}=14.</math>
  
We raise both sides of <math>a+a^{-1}=4</math> to the fourth power, then apply the Binomial Theorem:
+
Applying the Binomial Theorem, we raise both sides of <math>a+a^{-1}=4</math> to the fourth power:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
\binom40a^4a^0+\binom41a^3a^{-1}+\binom42a^2a^{-2}+\binom43a^1a^{-3}+\binom44a^0a^{-4}&=256 \
 
\binom40a^4a^0+\binom41a^3a^{-1}+\binom42a^2a^{-2}+\binom43a^1a^{-3}+\binom44a^0a^{-4}&=256 \
Line 33: Line 48:
 
\left(a^4+a^{-4}\right)+4\left(a^2+a^{-2}\right)&=250 \
 
\left(a^4+a^{-4}\right)+4\left(a^2+a^{-2}\right)&=250 \
 
\left(a^4+a^{-4}\right)+4(14)&=250 \
 
\left(a^4+a^{-4}\right)+4(14)&=250 \
a^4+a^{-4}&=\boxed{\text{(D)}\ 194}.
+
a^4+a^{-4}&=\boxed{\textbf{(D)}\ 194}.
 
\end{align*}</cmath>
 
\end{align*}</cmath>
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  
== Solution 4 (Solves for a) ==
+
== Solution 5 (Solves for a) ==
 
We multiply both sides of <math>4=a+a^{-1}</math> by <math>a,</math> then rearrange: <cmath>a^2-4a+1=0.</cmath>
 
We multiply both sides of <math>4=a+a^{-1}</math> by <math>a,</math> then rearrange: <cmath>a^2-4a+1=0.</cmath>
  
 
We apply the Quadratic Formula to get <math>a=2\pm\sqrt3.</math>  
 
We apply the Quadratic Formula to get <math>a=2\pm\sqrt3.</math>  
  
Note that the roots are reciprocals of each other. Therefore, choosing either value for <math>a</math> gives the same value for <math>a^4+a^{-4}:</math>
+
By Vieta's Formulas, note that the roots are reciprocals of each other. Therefore, both values of <math>a</math> produce the same value of <math>a^4+a^{-4}:</math>
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
a^4+a^{-4}&=\left(2+\sqrt{3}\right)^4 + \frac{1}{\left(2+\sqrt{3}\right)^4} \
+
a^4+a^{-4}&=\left(2+\sqrt{3}\right)^4 + \left(2+\sqrt{3}\right)^{-4} \
&=\left(2+\sqrt{3}\right)^4+\left(2-\sqrt{3}\right)^4 &&&(*) \
+
&=\left(2+\sqrt{3}\right)^4+\left(2-\sqrt{3}\right)^4 &&(*) \
&=\boxed{\text{(D)}\ 194}.
+
&=\boxed{\textbf{(D)}\ 194}.
 
\end{align*}</cmath>
 
\end{align*}</cmath>
<b>Remarks in <math>\boldsymbol{(*)}</math></b>
+
<b>Remarks about <math>\boldsymbol{(*)}</math></b>
 
<ol style="margin-left: 1.5em;">
 
<ol style="margin-left: 1.5em;">
 
   <li>To find the fourth power of a sum/difference, we can first square that sum/difference, then square the result.</li><p>
 
   <li>To find the fourth power of a sum/difference, we can first square that sum/difference, then square the result.</li><p>
Line 57: Line 72:
 
~MRENTHUSIASM (Reconstruction)
 
~MRENTHUSIASM (Reconstruction)
  
== Solution 5 (Newton's Sums) ==
+
== Solution 6 (Newton's Sums) ==
 
From the first sentence of Solution 4, we conclude that <math>a</math> and <math>a^{-1}</math> are the roots of <math>x^2-4x+1=0.</math> Let
 
From the first sentence of Solution 4, we conclude that <math>a</math> and <math>a^{-1}</math> are the roots of <math>x^2-4x+1=0.</math> Let
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
Line 70: Line 85:
 
&1\cdot P_2-4\cdot P_1+1\cdot2 &&=0 &&\qquad\implies\qquad P_2&&=14, \
 
&1\cdot P_2-4\cdot P_1+1\cdot2 &&=0 &&\qquad\implies\qquad P_2&&=14, \
 
&1\cdot P_3-4\cdot P_2+1\cdot P_1&&=0 &&\qquad\implies\qquad P_3&&=52, \
 
&1\cdot P_3-4\cdot P_2+1\cdot P_1&&=0 &&\qquad\implies\qquad P_3&&=52, \
&1\cdot P_4-4\cdot P_3+1\cdot P_2&&=0 &&\qquad\implies\qquad P_4&&=\boxed{\text{(D)}\ 194}.
+
&1\cdot P_4-4\cdot P_3+1\cdot P_2&&=0 &&\qquad\implies\qquad P_4&&=\boxed{\textbf{(D)}\ 194}.
 
\end{alignat*}</cmath>
 
\end{alignat*}</cmath>
 
~Albert1993 (Fundamental Logic)
 
~Albert1993 (Fundamental Logic)
Line 76: Line 91:
 
~MRENTHUSIASM (Reconstruction)
 
~MRENTHUSIASM (Reconstruction)
  
== Solution 6 (Answer Choices) ==
+
== Solution 7 (Answer Choices) ==
Note that <cmath>a^{4} + a^{-4} = \left(a^{2} + a^{-2}\right)^{2} - 2.</cmath> We guess that <math>a^{2} + a^{-2}</math> is an integer, so the answer must be <math>2</math> less than a perfect square. The only possibility is <math>\boxed{\text{(D)}\ 194}.</math>
+
Note that <cmath>a^{4} + a^{-4} = (a^{2} + a^{-2})^{2} - 2.</cmath> We guess that <math>a^{2} + a^{-2}</math> is an integer, so the answer must be <math>2</math> less than a perfect square. The only possibility is <math>\boxed{\textbf{(D)}\ 194}.</math>
  
 
~Thanosaops (Fundamental Logic)
 
~Thanosaops (Fundamental Logic)
Line 83: Line 98:
 
~MRENTHUSIASM (Reconstruction)
 
~MRENTHUSIASM (Reconstruction)
  
== Solution 7 (Easier to understand version of Solution 1) ==
+
== Video Solution by OmegaLearn ==
The algebra is as follows:
+
https://youtu.be/MhALjut3Qmw?t=484
<cmath>a+\frac{1}{a}=4</cmath>
+
 
<cmath>\left(a+\frac{1}{a}\right)^2=4^2</cmath>
+
~ pi_is_3.14
<cmath>a^2+2a\frac{1}{a}+\left(\frac{1}{a}\right)^2=16</cmath>
 
<cmath>a^2+\frac{1}{a^2}=16-2=14</cmath>
 
<cmath>\left(a^2+\frac{1}{a^2}\right)^2=14^2</cmath>
 
<cmath>\left(a^2\right)^2+2a^2\frac{1}{a^2}+\left(\frac{1}{a^2}\right)^2=196</cmath>
 
<cmath>a^4+\frac{1}{a^4}=196-2=\boxed{194}</cmath>
 
~MathFun1000 (Entire solution)
 
  
 
== See also ==
 
== See also ==

Latest revision as of 06:32, 4 November 2022

Problem

Suppose that the number $a$ satisfies the equation $4 = a + a^{ - 1}$. What is the value of $a^{4} + a^{ - 4}$?

$\textbf{(A)}\ 164 \qquad \textbf{(B)}\ 172 \qquad \textbf{(C)}\ 192 \qquad \textbf{(D)}\ 194 \qquad \textbf{(E)}\ 212$

Solution 1 (Decreases the Powers)

Note that for all real numbers $k,$ we have $a^{2k} + a^{-2k} + 2 = (a^{k} + a^{-k})^2,$ from which \[a^{2k} + a^{-2k} = (a^{k} + a^{-k})^2-2.\] We apply this result twice to get the answer: \begin{align*} a^4 + a^{-4} &= (a^2 + a^{-2})^2 - 2 \\ &= [(a + a^{-1})^2 - 2]^2 - 2 \\ &= \boxed{\textbf{(D)}\ 194}. \end{align*} ~Azjps (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Solution 2 (Increases the Powers)

Squaring both sides of $a+a^{-1}=4$ gives $a^2+a^{-2}+2=16,$ from which $a^2+a^{-2}=14.$

Squaring both sides of $a^2+a^{-2}=14$ gives $a^4+a^{-4}+2=196,$ from which $a^4+a^{-4}=\boxed{\textbf{(D)}\ 194}.$

~Rbhale12 (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Solution 3 (Detailed Explanation of Solution 2)

The detailed explanation of Solution 2 is as follows: \begin{alignat*}{8} a+a^{-1}&=4 \\ (a+a^{-1})^2&=4^2 \\ a^2+2aa^{-1}+a^{-2}&=16 \\ a^2+a^{-2}&=16-2&&=14 \\ (a^2+a^{-2})^2&=14^2 \\ a^4+2a^2a^{-2}+a^{-4}&=196 \\ a^4+a^{-4}&=196-2&&=\boxed{\textbf{(D)}\ 194}. \\ \end{alignat*} ~MathFun1000 (Solution)

~MRENTHUSIASM (Minor Formatting)

Solution 4 (Binomial Theorem)

Squaring both sides of $a+a^{-1}=4$ gives $a^2+a^{-2}+2=16,$ from which $a^2+a^{-2}=14.$

Applying the Binomial Theorem, we raise both sides of $a+a^{-1}=4$ to the fourth power: \begin{align*} \binom40a^4a^0+\binom41a^3a^{-1}+\binom42a^2a^{-2}+\binom43a^1a^{-3}+\binom44a^0a^{-4}&=256 \\ a^4+4a^2+6+4a^{-2}+a^{-4}&=256 \\ \left(a^4+a^{-4}\right)+4\left(a^2+a^{-2}\right)&=250 \\ \left(a^4+a^{-4}\right)+4(14)&=250 \\ a^4+a^{-4}&=\boxed{\textbf{(D)}\ 194}. \end{align*} ~MRENTHUSIASM

Solution 5 (Solves for a)

We multiply both sides of $4=a+a^{-1}$ by $a,$ then rearrange: \[a^2-4a+1=0.\]

We apply the Quadratic Formula to get $a=2\pm\sqrt3.$

By Vieta's Formulas, note that the roots are reciprocals of each other. Therefore, both values of $a$ produce the same value of $a^4+a^{-4}:$ \begin{align*} a^4+a^{-4}&=\left(2+\sqrt{3}\right)^4 + \left(2+\sqrt{3}\right)^{-4} \\ &=\left(2+\sqrt{3}\right)^4+\left(2-\sqrt{3}\right)^4 &&(*) \\ &=\boxed{\textbf{(D)}\ 194}. \end{align*} Remarks about $\boldsymbol{(*)}$

  1. To find the fourth power of a sum/difference, we can first square that sum/difference, then square the result.
  2. When we expand the fourth powers and combine like terms, the irrational terms will cancel.

~Azjps (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Solution 6 (Newton's Sums)

From the first sentence of Solution 4, we conclude that $a$ and $a^{-1}$ are the roots of $x^2-4x+1=0.$ Let \begin{align*} P_1&=a+a^{-1}, \\ P_2&=a^2+a^{-2}, \\ P_3&=a^3+a^{-3}, \\ P_4&=a^4+a^{-4}. \end{align*} By Newton's Sums, we have \begin{alignat*}{12} &1\cdot P_1-4\cdot 1&&=0 &&\qquad\implies\qquad P_1&&=4, \\ &1\cdot P_2-4\cdot P_1+1\cdot2 &&=0 &&\qquad\implies\qquad P_2&&=14, \\ &1\cdot P_3-4\cdot P_2+1\cdot P_1&&=0 &&\qquad\implies\qquad P_3&&=52, \\ &1\cdot P_4-4\cdot P_3+1\cdot P_2&&=0 &&\qquad\implies\qquad P_4&&=\boxed{\textbf{(D)}\ 194}. \end{alignat*} ~Albert1993 (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Solution 7 (Answer Choices)

Note that \[a^{4} + a^{-4} = (a^{2} + a^{-2})^{2} - 2.\] We guess that $a^{2} + a^{-2}$ is an integer, so the answer must be $2$ less than a perfect square. The only possibility is $\boxed{\textbf{(D)}\ 194}.$

~Thanosaops (Fundamental Logic)

~MRENTHUSIASM (Reconstruction)

Video Solution by OmegaLearn

https://youtu.be/MhALjut3Qmw?t=484

~ pi_is_3.14

See also

2007 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png