Difference between revisions of "2022 AMC 10B Problems/Problem 1"

(Blanked the page)
(Tag: Blanking)
Line 1: Line 1:
 +
{{duplicate|[[2022 AMC 10B Problems/Problem 1|2022 AMC 10B #1]] and [[2022 AMC 12B Problems/Problem 1|2022 AMC 12B #1]]}}
  
 +
==Problem==
 +
Define <math>x\diamondsuit y</math> to be <math>|x-y|</math> for all real numbers <math>x</math> and <math>y.</math> What is the value of <cmath>(1\diamondsuit(2\diamondsuit3))-((1\diamondsuit2)\diamondsuit3)?</cmath>
 +
<math>\textbf{(A)}\ {-}2 \qquad\textbf{(B)}\ {-}1 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 2</math>
 +
 +
== Solution ==
 +
We have <cmath>(1\diamondsuit(2\diamondsuit3))-((1\diamondsuit2)\diamondsuit3)=(1\diamondsuit1)-(1\diamondsuit3)=0-2=\boxed{\textbf{(A)}\ {-}2}.</cmath>
 +
~MRENTHUSIASM
 +
 +
== See Also ==
 +
 +
{{AMC10 box|year=2022|ab=B|before=First Problem|num-a=2}}
 +
{{AMC12 box|year=2022|ab=B|before=First Problem|num-a=2}}
 +
{{MAA Notice}}

Revision as of 14:24, 17 November 2022

The following problem is from both the 2022 AMC 10B #1 and 2022 AMC 12B #1, so both problems redirect to this page.

Problem

Define $x\diamondsuit y$ to be $|x-y|$ for all real numbers $x$ and $y.$ What is the value of \[(1\diamondsuit(2\diamondsuit3))-((1\diamondsuit2)\diamondsuit3)?\] $\textbf{(A)}\ {-}2 \qquad\textbf{(B)}\ {-}1 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 2$

Solution

We have \[(1\diamondsuit(2\diamondsuit3))-((1\diamondsuit2)\diamondsuit3)=(1\diamondsuit1)-(1\diamondsuit3)=0-2=\boxed{\textbf{(A)}\ {-}2}.\] ~MRENTHUSIASM

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png