Difference between revisions of "2022 AMC 10B Problems/Problem 2"
(Created page with "==Problem== In rhombus <math>ABCD</math>, point <math>P</math> lies on segment <math>\overline{AD}</math> so that <math>\overline{BP}</math> <math>\perp</math> <math>\overlin...") |
(→Problem) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A) }3\sqrt{5}\qquad\textbf{(B) }10\qquad\textbf{(C) }6\sqrt{5}\qquad\textbf{(D) }20\qquad\textbf{(E) }25</math> | <math>\textbf{(A) }3\sqrt{5}\qquad\textbf{(B) }10\qquad\textbf{(C) }6\sqrt{5}\qquad\textbf{(D) }20\qquad\textbf{(E) }25</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
+ | <math>AD = AP + PD = 3 + 2 =5</math> | ||
+ | |||
+ | <math>ABCD</math> is a rhombus, so <math>AD = AB = 5</math> | ||
+ | |||
+ | <math>\bigtriangleup APB</math> is a 3-4-5 right triangle, so <math>BP = 4</math>. | ||
+ | |||
+ | Area of a rhombus <math>= bh = (AD)(BP) = 5 * 4 = \boxed{\textbf{(D) }20}</math>. | ||
+ | |||
-richiedelgado | -richiedelgado |
Revision as of 15:38, 17 November 2022
Problem
In rhombus , point lies on segment so that , , and . What is the area of ? (Note: The figure is not drawn to scale.)
Solution
is a rhombus, so
is a 3-4-5 right triangle, so .
Area of a rhombus .
-richiedelgado