Difference between revisions of "2022 AMC 10B Problems/Problem 2"
(→Solution) |
Ehuang0531 (talk | contribs) (restored original not-to-scale figure in problem statement and moved to-scale figure to solution; ce) |
||
Line 3: | Line 3: | ||
In rhombus <math>ABCD</math>, point <math>P</math> lies on segment <math>\overline{AD}</math> so that <math>\overline{BP}</math> <math>\perp</math> <math>\overline{AD}</math>, <math>AP = 3</math>, and <math>PD = 2</math>. What is the area of <math>ABCD</math>? (Note: The figure is not drawn to scale.) | In rhombus <math>ABCD</math>, point <math>P</math> lies on segment <math>\overline{AD}</math> so that <math>\overline{BP}</math> <math>\perp</math> <math>\overline{AD}</math>, <math>AP = 3</math>, and <math>PD = 2</math>. What is the area of <math>ABCD</math>? (Note: The figure is not drawn to scale.) | ||
− | ( | + | <asy> |
+ | import olympiad; | ||
+ | size(180); | ||
+ | real r = 3, s = 5, t = sqrt(r*r+s*s); | ||
+ | defaultpen(linewidth(0.6) + fontsize(10)); | ||
+ | pair A = (0,0), B = (r,s), C = (r+t,s), D = (t,0), P = (r,0); | ||
+ | draw(A--B--C--D--A^^B--P^^rightanglemark(B,P,D)); | ||
+ | label("$A$",A,SW); | ||
+ | label("$B$", B, NW); | ||
+ | label("$C$",C,NE); | ||
+ | label("$D$",D,SE); | ||
+ | label("$P$",P,S); | ||
+ | </asy> | ||
+ | |||
+ | <math>\textbf{(A) }3\sqrt{5}\qquad\textbf{(B) }10\qquad\textbf{(C) }6\sqrt{5}\qquad\textbf{(D) }20\qquad\textbf{(E) }25</math> | ||
+ | |||
+ | ==Solution== | ||
+ | |||
<asy> | <asy> | ||
pair A = (0,0); | pair A = (0,0); | ||
Line 20: | Line 37: | ||
</asy> | </asy> | ||
− | + | (Figure redrawn to scale.) | |
− | |||
− | |||
− | <math>AD = AP + PD = 3 + 2 =5</math> | + | <math>AD = AP + PD = 3 + 2 = 5.</math> |
− | <math>ABCD</math> is a rhombus, so <math> | + | <math>ABCD</math> is a rhombus, so <math>AB = AP = 5</math>. |
<math>\bigtriangleup APB</math> is a 3-4-5 right triangle, so <math>BP = 4</math>. | <math>\bigtriangleup APB</math> is a 3-4-5 right triangle, so <math>BP = 4</math>. | ||
− | + | The area of the rhombus <math>= bh = (AD)(BP) = 5 * 4 = \boxed{\textbf{(D) }20}</math>. | |
~richiedelgado | ~richiedelgado |
Revision as of 17:06, 17 November 2022
Problem
In rhombus , point lies on segment so that , , and . What is the area of ? (Note: The figure is not drawn to scale.)
Solution
(Figure redrawn to scale.)
is a rhombus, so .
is a 3-4-5 right triangle, so .
The area of the rhombus .
~richiedelgado