Difference between revisions of "2022 AMC 10B Problems/Problem 9"

(Solution)
(Solution)
Line 6: Line 6:
 
<math> \textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024</math>
 
<math> \textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024</math>
  
==Solution==
+
==Solution 1==
  
 
Note that <math>\frac{n}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!}</math>, and therefore this sum is a telescoping sum, which is equivalent to <math>1 - \frac{1}{2022!}</math>. Our answer is <math>1 + 2022 = \boxed{\textbf{(D)}\ 2023}</math>.
 
Note that <math>\frac{n}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!}</math>, and therefore this sum is a telescoping sum, which is equivalent to <math>1 - \frac{1}{2022!}</math>. Our answer is <math>1 + 2022 = \boxed{\textbf{(D)}\ 2023}</math>.
Line 12: Line 12:
 
~mathboy100
 
~mathboy100
  
 
+
==Solution 2==
 
We have <math>(\frac{1}{2!}+\frac{2}{3!}+\dots+\frac{2021}{2022!})+\frac{1}{2022!}=(\frac{1}{2!}+\frac{2}{3!}+\dots+\frac{2020}{2021!})+\frac{1}{2021!}</math> from canceling a 2022 from <math>\frac{2021+1}{2022!}</math>.
 
We have <math>(\frac{1}{2!}+\frac{2}{3!}+\dots+\frac{2021}{2022!})+\frac{1}{2022!}=(\frac{1}{2!}+\frac{2}{3!}+\dots+\frac{2020}{2021!})+\frac{1}{2021!}</math> from canceling a 2022 from <math>\frac{2021+1}{2022!}</math>.
 
This sum clearly telescopes, thus we end up with <math>(\frac{1}{2!}+\frac{2}{3!})+\frac{1}{3!}=\frac{2}{2!}=1</math>. Thus the original equation is equal to <math>1-\frac{1}{2022}</math>, and <math>1+2022=2023</math>. <math>\boxed{\textbf{(D)}\ 2023}</math>.
 
This sum clearly telescopes, thus we end up with <math>(\frac{1}{2!}+\frac{2}{3!})+\frac{1}{3!}=\frac{2}{2!}=1</math>. Thus the original equation is equal to <math>1-\frac{1}{2022}</math>, and <math>1+2022=2023</math>. <math>\boxed{\textbf{(D)}\ 2023}</math>.

Revision as of 21:15, 17 November 2022

Problem

The sum \[\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\dots+\frac{2021}{2022!}\]can be expressed as $a-\frac{1}{b!}$, where $a$ and $b$ are positive integers. What is $a+b$?

$\textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024$

Solution 1

Note that $\frac{n}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!}$, and therefore this sum is a telescoping sum, which is equivalent to $1 - \frac{1}{2022!}$. Our answer is $1 + 2022 = \boxed{\textbf{(D)}\ 2023}$.

~mathboy100

Solution 2

We have $(\frac{1}{2!}+\frac{2}{3!}+\dots+\frac{2021}{2022!})+\frac{1}{2022!}=(\frac{1}{2!}+\frac{2}{3!}+\dots+\frac{2020}{2021!})+\frac{1}{2021!}$ from canceling a 2022 from $\frac{2021+1}{2022!}$. This sum clearly telescopes, thus we end up with $(\frac{1}{2!}+\frac{2}{3!})+\frac{1}{3!}=\frac{2}{2!}=1$. Thus the original equation is equal to $1-\frac{1}{2022}$, and $1+2022=2023$. $\boxed{\textbf{(D)}\ 2023}$.

~not_slay

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png