Difference between revisions of "2022 AMC 10A Problems/Problem 24"
Pi is 3.14 (talk | contribs) (Redirected page to 2022 AMC 12A Problems/Problem 24) (Tag: New redirect) |
MRENTHUSIASM (talk | contribs) (Removed redirect to 2022 AMC 12A Problems/Problem 24) (Tag: Removed redirect) |
||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | |||
+ | How many strings of length <math>5</math> formed from the digits <math>0</math>, <math>1</math>, <math>2</math>, <math>3</math>, <math>4</math> are there such that for each <math>j \in \{1,2,3,4\}</math>, at least <math>j</math> of the digits are less than <math>j</math>? (For example, <math>02214</math> satisfies this condition | ||
+ | because it contains at least <math>1</math> digit less than <math>1</math>, at least <math>2</math> digits less than <math>2</math>, at least <math>3</math> digits less | ||
+ | than <math>3</math>, and at least <math>4</math> digits less than <math>4</math>. The string <math>23404</math> does not satisfy the condition because it | ||
+ | does not contain at least <math>2</math> digits less than <math>2</math>.) | ||
+ | |||
+ | <math>\textbf{(A) }500\qquad\textbf{(B) }625\qquad\textbf{(C) }1089\qquad\textbf{(D) }1199\qquad\textbf{(E) }1296</math> | ||
+ | |||
+ | == Solution 1 (Parking Functions) == | ||
+ | For some <math>n</math>, let there be <math>n+1</math> parking spaces counterclockwise in a circle. Consider a string of <math>n</math> integers <math>c_1c_2 \cdots c_n</math> each between <math>0</math> and <math>n</math>, and let <math>n</math> cars come into this circle so that the <math>i</math>th car tries to park at spot <math>c_i</math>, but if it is already taken then it instead keeps going counterclockwise and takes the next avaliable spot. After this process, exactly one spot will remain empty. | ||
+ | |||
+ | Then the strings of <math>n</math> numbers between <math>0</math> and <math>n-1</math> that contain at least <math>k</math> integers <math><k</math> for <math>1 \leq k \leq n+1</math> are exactly the set of strings that leave spot <math>n</math> empty. Also note for any string <math>c_1c_2 \cdots c_n</math>, we can add <math>1</math> to each <math>c_i</math> (mod <math>n+1</math>) to shift the empty spot counterclockwise, meaning for each string there exists exactly one <math>j</math> with <math>0 \leq j \leq n</math> so that <math>(c_1+j)(c_2+j) \cdots (c_n+j)</math> leaves spot <math>n</math> empty. This gives there are <math>\frac{(n+1)^{n}}{n+1} = (n+1)^{n-1}</math> such strings. | ||
+ | |||
+ | Plugging in <math>n = 5</math> gives <math>\boxed{\textbf{(E) }1296}</math> such strings. | ||
+ | |||
+ | ~oh54321 | ||
+ | |||
+ | ==Solution 2 (Casework)== | ||
+ | |||
+ | Note that a valid string must have at least one <math>0.</math> | ||
+ | |||
+ | We perform casework on the number of different digits such strings can have. For each string, we list the digits in ascending order, then consider permutations: | ||
+ | <ol style="margin-left: 1.5em;"> | ||
+ | <li>The string has <math>1</math> different digit.</li><p> | ||
+ | The only possibility is <math>00000.</math> <p> | ||
+ | <b>There is <math>\boldsymbol{1}</math> string in this case.</b> | ||
+ | <li>The string has <math>2</math> different digits.</li><p> | ||
+ | We have the following table: | ||
+ | <cmath>\begin{array}{c||c|c|c|c||c} | ||
+ | & & & & & \ [-2.5ex] | ||
+ | \textbf{Digits} & \boldsymbol{01} & \boldsymbol{02} & \boldsymbol{03} & \boldsymbol{04} & \textbf{Row's Count} \ [0.5ex] | ||
+ | \hline | ||
+ | & & & & & \ [-1.5ex] | ||
+ | & 00001 & 00002 & 00003 & 00004 & \hspace{2mm}4\cdot\frac{5!}{4!1!}=20 \ [2ex] | ||
+ | & 00011 & 00022 & 00033 & & \hspace{2mm}3\cdot\frac{5!}{3!2!}=30 \ [2ex] | ||
+ | & 00111 & 00222 & & & \hspace{2mm}2\cdot\frac{5!}{2!3!}=20 \ [2ex] | ||
+ | & 01111 & & & & 1\cdot\frac{5!}{1!4!}=5 \ [0.75ex] | ||
+ | \end{array}</cmath> | ||
+ | <b>There are <math>\boldsymbol{20+30+20+5=75}</math> strings in this case.</b> | ||
+ | <li>The string has <math>3</math> different digits.</li><p> | ||
+ | We have the following table: | ||
+ | <cmath>\begin{array}{c||c|c|c|c|c|c||c} | ||
+ | & & & & & & & \ [-2.5ex] | ||
+ | \textbf{Digits} & \boldsymbol{012} & \boldsymbol{013} & \boldsymbol{014} & \boldsymbol{023} & \boldsymbol{024} & \boldsymbol{034} & \textbf{Row's Count} \ [0.5ex] | ||
+ | \hline | ||
+ | & & & & & & & \ [-1.5ex] | ||
+ | & 00012 & 00013 & 00014 & 00023 & 00024 & 00034 & \hspace{2mm}6\cdot\frac{5!}{3!1!1!}=120 \ [2ex] | ||
+ | & 00112 & 00113 & 00114 & 00223 & 00224 & & \hspace{2mm}5\cdot\frac{5!}{2!2!1!}=150 \ [2ex] | ||
+ | & 00122 & 00133 & & 00233 & & & 3\cdot\frac{5!}{2!1!2!}=90 \ [2ex] | ||
+ | & 01112 & 01113 & 01114 & & & & 3\cdot\frac{5!}{1!3!1!}=60 \ [2ex] | ||
+ | & 01122 & 01133 & & & & & 2\cdot\frac{5!}{1!2!2!}=60 \ [2ex] | ||
+ | & 01222 & & & & & & 1\cdot\frac{5!}{1!1!3!}=20 \ [0.75ex] | ||
+ | \end{array}</cmath> | ||
+ | <b>There are <math>\boldsymbol{120+150+90+60+60+20=500}</math> strings in this case.</b> | ||
+ | <li>The string has <math>4</math> different digits.</li><p> | ||
+ | We have the following table: | ||
+ | <cmath>\begin{array}{c||c|c|c|c} | ||
+ | & & & & \ [-2.5ex] | ||
+ | \textbf{Digits} & \boldsymbol{0123} & \boldsymbol{0124} & \boldsymbol{0134} & \boldsymbol{0234} \ [0.5ex] | ||
+ | \hline | ||
+ | & & & & \ [-1.5ex] | ||
+ | & 00123 & 00124 & 00134 & 00234 \ [2ex] | ||
+ | & 01123 & 01124 & 01134 & \ [2ex] | ||
+ | & 01223 & 01224 & & \ [2ex] | ||
+ | & 01233 & & & \ [0.75ex] | ||
+ | \end{array}</cmath> | ||
+ | <b>There are <math>\boldsymbol{10\cdot\frac{5!}{2!1!1!1!}=600}</math> strings in this case.</b> | ||
+ | <li>The string has <math>5</math> different digits.</li><p> | ||
+ | <b>There are <math>\boldsymbol{5!=120}</math> strings in this case.</b> | ||
+ | </ol> | ||
+ | Together, the answer is <math>1+75+500+600+120=\boxed{\textbf{(E) }1296}.</math> | ||
+ | |||
+ | ~MRENTHUSIASM | ||
+ | |||
+ | ==Solution 3 (Recursive Equations Approach)== | ||
+ | |||
+ | Denote by <math>N \left( p, q \right)</math> the number of <math>p</math>-digit strings formed by using numbers <math>0, 1, \cdots, q</math>, where for each <math>j \in \{1,2, \cdots , q\}</math>, at least <math>j</math> of the digits are less than <math>j</math>. | ||
+ | |||
+ | We have the following recursive equation: | ||
+ | <cmath> | ||
+ | N \left( p, q \right) | ||
+ | = \sum_{i = 0}^{p - q} \binom{p}{i} N \left( p - i, q - 1 \right) , \ \forall \ p \geq q \mbox{ and } q \geq 1 | ||
+ | </cmath> | ||
+ | and the boundary condition <math>N \left( p, 0 \right) = 1</math> for any <math>p \geq 0</math>. | ||
+ | |||
+ | By solving this recursive equation, for <math>q = 1</math> and <math>p \geq q</math>, we get | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | N \left( p , 1 \right) | ||
+ | & = \sum_{i = 0}^{p - 1} \binom{p}{i} N \left( p - i, 0 \right) \ | ||
+ | & = \sum_{i = 0}^{p - 1} \binom{p}{i} \ | ||
+ | & = \sum_{i = 0}^p \binom{p}{i} - \binom{p}{p} \ | ||
+ | & = 2^p - 1 . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | For <math>q = 2</math> and <math>p \geq q</math>, we get | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | N \left( p , 2 \right) | ||
+ | & = \sum_{i = 0}^{p - 2} \binom{p}{i} N \left( p - i, 1 \right) \ | ||
+ | & = \sum_{i = 0}^{p - 2} \binom{p}{i} \left( 2^{p - i} - 1 \right) \ | ||
+ | & = \sum_{i = 0}^p \binom{p}{i} \left( 2^{p - i} - 1 \right) | ||
+ | - \sum_{i = p - 1}^p \binom{p}{i} \left( 2^{p - i} - 1 \right) \ | ||
+ | & = \sum_{i = 0}^p \left( \binom{p}{i} 1^i 2^{p - i} - \binom{p}{i} 1^i 1^{p - i} \right) | ||
+ | - p \ | ||
+ | & = \left( 1 + 2 \right)^p - \left( 1 + 1 \right)^p - p \ | ||
+ | & = 3^p - 2^p - p . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | For <math>q = 3</math> and <math>p \geq q</math>, we get | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | N \left( p , 3 \right) | ||
+ | & = \sum_{i = 0}^{p - 3} \binom{p}{i} N \left( p - i, 2 \right) \ | ||
+ | & = \sum_{i = 0}^{p - 3} \binom{p}{i} \left( 3^{p - i} - 2^{p - i} - \left( p - i \right) \right) \ | ||
+ | & = \sum_{i = 0}^p \binom{p}{i} \left( 3^{p - i} - 2^{p - i} - \left( p - i \right) \right) | ||
+ | - \sum_{i = p - 2}^p \binom{p}{i} \left( 3^{p - i} - 2^{p - i} - \left( p - i \right) \right) \ | ||
+ | & = \sum_{i = 0}^p \left( \binom{p}{i} 1^i 3^{p - i} - \binom{p}{i} 1^i 2^{p - i} | ||
+ | - \binom{p}{i} \left( p - i \right) \right) | ||
+ | - \frac{3}{2} p \left( p - 1 \right) \ | ||
+ | & = \left( 1 + 3 \right)^p - \left( 1 + 2 \right)^p | ||
+ | - \frac{d \left( 1 + x \right)^p}{dx} \bigg|_{x = 1} | ||
+ | - \frac{3}{2} p \left( p - 1 \right) \ | ||
+ | & = 4^p - 3^p - 2^{p-1} p - \frac{3}{2} p \left( p - 1 \right) . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | For <math>q = 4</math> and <math>p = 5</math>, we get | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | N \left( 5 , 4 \right) | ||
+ | & = \sum_{i = 0}^1 \binom{5}{i} N \left( 5 - i , 3 \right) \ | ||
+ | & = N \left( 5 , 3 \right) + 5 N \left( 4 , 3 \right) \ | ||
+ | & = \boxed{\textbf{(E) }1296} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
+ | |||
+ | ==Solution 4 (Answer Choices)== | ||
+ | Let the set of all valid sequences be <math>S</math>. | ||
+ | Notice that for any sequence <math>\{a_1,a_2,a_3,a_4,a_5\}</math> in <math>S</math>, the sequences | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \{a_2,a_3,a_4,a_5,a_1\}\ | ||
+ | \{a_3,a_4,a_5,a_1,a_2\}\ | ||
+ | \{a_4,a_5,a_1,a_2,a_3\}\ | ||
+ | \{a_5,a_1,a_2,a_3,a_4\} | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | must also belong in <math>S</math>. However, one must consider the edge case all 5 elements are the same (only <math>\{0,0,0,0,0\}</math>), in which case all sequences listed are equivalent. Then <math>\lvert S \rvert \equiv 1 \pmod 5</math>, which yields <math>\boxed{\textbf{(E) }1296}</math> by inspection. | ||
+ | |||
+ | ~Tau | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/130OKAfG_-o | ||
+ | |||
+ | ~MathProblemSolvingSkills.com | ||
+ | |||
+ | ==Video Solution== | ||
+ | |||
+ | https://youtu.be/mj78e_LnkX0 | ||
+ | |||
+ | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
+ | |||
+ | == Video Solution By OmegaLearn using Complementary Counting == | ||
+ | |||
+ | https://youtu.be/jWoxFT8hRn8 | ||
+ | |||
+ | ~ pi_is_3.14 | ||
+ | |||
+ | == See Also == | ||
+ | |||
+ | {{AMC10 box|year=2022|ab=A|num-b=23|num-a=25}} | ||
+ | {{AMC12 box|year=2022|ab=A|num-b=23|num-a=25}} | ||
+ | |||
+ | [[Category:Intermediate Combinatorics Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 08:52, 5 December 2022
Contents
[hide]Problem
How many strings of length formed from the digits
,
,
,
,
are there such that for each
, at least
of the digits are less than
? (For example,
satisfies this condition
because it contains at least
digit less than
, at least
digits less than
, at least
digits less
than
, and at least
digits less than
. The string
does not satisfy the condition because it
does not contain at least
digits less than
.)
Solution 1 (Parking Functions)
For some , let there be
parking spaces counterclockwise in a circle. Consider a string of
integers
each between
and
, and let
cars come into this circle so that the
th car tries to park at spot
, but if it is already taken then it instead keeps going counterclockwise and takes the next avaliable spot. After this process, exactly one spot will remain empty.
Then the strings of numbers between
and
that contain at least
integers
for
are exactly the set of strings that leave spot
empty. Also note for any string
, we can add
to each
(mod
) to shift the empty spot counterclockwise, meaning for each string there exists exactly one
with
so that
leaves spot
empty. This gives there are
such strings.
Plugging in gives
such strings.
~oh54321
Solution 2 (Casework)
Note that a valid string must have at least one
We perform casework on the number of different digits such strings can have. For each string, we list the digits in ascending order, then consider permutations:
- The string has
different digit.
- The string has
different digits.
- The string has
different digits.
- The string has
different digits.
- The string has
different digits.
The only possibility is
There is string in this case.
We have the following table:
There are
strings in this case.
We have the following table:
There are
strings in this case.
We have the following table:
There are
strings in this case.
There are strings in this case.
Together, the answer is
~MRENTHUSIASM
Solution 3 (Recursive Equations Approach)
Denote by the number of
-digit strings formed by using numbers
, where for each
, at least
of the digits are less than
.
We have the following recursive equation:
and the boundary condition
for any
.
By solving this recursive equation, for and
, we get
For and
, we get
For and
, we get
For and
, we get
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 4 (Answer Choices)
Let the set of all valid sequences be .
Notice that for any sequence
in
, the sequences
must also belong in
. However, one must consider the edge case all 5 elements are the same (only
), in which case all sequences listed are equivalent. Then
, which yields
by inspection.
~Tau
Video Solution
~MathProblemSolvingSkills.com
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution By OmegaLearn using Complementary Counting
~ pi_is_3.14
See Also
2022 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.