Difference between revisions of "1972 IMO Problems/Problem 3"
m (→Solution 1) |
Mathboy100 (talk | contribs) |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 27: | Line 27: | ||
Therefore, we have found the recurrence relation <cmath>f(m,n)=4f(m,n-1)-f(m+1,n-1).</cmath> | Therefore, we have found the recurrence relation <cmath>f(m,n)=4f(m,n-1)-f(m+1,n-1).</cmath> | ||
− | Note that <math>f(m,0)</math> is just <math>\binom{2m}{m}</math>, which is an integer for all <math>m \geq 0</math>. Then <cmath>f(m,1)=4f(m,0)-f(m+1,0),</cmath> so <math>f(m,1)</math> is an integer, and therefore <math>f(m,2)=4f(m,1)-f(m+1,1)</math> must be an integer, etc. By induction, <math>f(m,n)</math> is an integer for all <math>m,n \geq 0</math>. | + | Note that <math>f(m,0)</math> is just <math>\binom{2m}{m}</math>, which is an integer for all <math>m \geq 0</math>. Then <cmath>f(m,1)=4f(m,0)-f(m+1,0),</cmath> so <math>f(m,1)</math> is an integer, and therefore <math>f(m,2)=4f(m,1)-f(m+1,1)</math> must be an integer, etc. |
+ | |||
+ | By induction, <math>f(m,n)</math> is an integer for all <math>m,n \geq 0</math>. | ||
Borrowed from http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln723.html | Borrowed from http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln723.html |
Revision as of 23:26, 6 December 2022
Let and be arbitrary non-negative integers. Prove that is an integer. (.)
Solution 1
Denote the given expression as . We intend to show that is integral for all . To start, we would like to find a recurrence relation for . First, let's look at : Second, let's look at : Combining, Therefore, we have found the recurrence relation
Note that is just , which is an integer for all . Then so is an integer, and therefore must be an integer, etc.
By induction, is an integer for all .
Borrowed from http://www.cs.cornell.edu/~asdas/imo/imo/isoln/isoln723.html
Solution 2
Let p be a prime, and n be an integer. Let be the largest positive integer such that
WTS: For all primes ,
We know
Lemma 2.1: Let be real numbers. Then
Proof of Lemma 2.1: Let and
On the other hand,
It is trivial that (Triangle Inequality)
Apply Lemma 2.1 to the problem: and we are pretty much done.
Note: I am lazy, so this is only the most important part. I hope you can come up with the rest of the solution. This is my work, but perhaps someone have come up with this method before I did.
See Also
1972 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |