Difference between revisions of "2022 AMC 10B Problems/Problem 6"

(Solution 2 (Simple Sums))
(Solution 2 (Simple Sums))
Line 20: Line 20:
 
==Solution 2 (Simple Sums)==
 
==Solution 2 (Simple Sums)==
  
Observe how <math>121 = 110+11</math> and <math>11211 = 11100 + 111</math> and <math>1112111 =1111000 + 1111</math> all take the form of <cmath>\overbrace{111\ldots}^{n+1}\overbrace{00\ldots}^{n} + \overbrace{111\ldots}^{n+1} = \overbrace{111\ldots}^{n+1}(10^{n} + 1).</cmath>
+
Observe how  
 +
<cmath>\begin{align*}
 +
121 &= 110 + 11, \
 +
11211 &= 11100 + 111, \
 +
1112111 &= 1111000 + 1111, \
 +
& \ \vdots
 +
\end{align*}</cmath>
 +
all take the form of <cmath>\overbrace{111\ldots}^{n+1}\overbrace{00\ldots}^{n} + \overbrace{111\ldots}^{n+1} = \overbrace{111\ldots}^{n+1}(10^{n} + 1).</cmath>
 
Factoring each of the sums, we have <math>11(10+1), 111(100+1),</math> and <math>1111(1000+1)</math> respectively. With each number factored, there are <math>\boxed{\textbf{(A) } 0}</math> primes in the set.
 
Factoring each of the sums, we have <math>11(10+1), 111(100+1),</math> and <math>1111(1000+1)</math> respectively. With each number factored, there are <math>\boxed{\textbf{(A) } 0}</math> primes in the set.
  

Revision as of 14:30, 31 December 2022

Problem

How many of the first ten numbers of the sequence $121, 11211, 1112111, \ldots$ are prime numbers?

$\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4$

Solution 1 (Generalization)

The $n$th term of this sequence is \[\sum_{k=n}^{2n}10^k + \sum_{k=0}^{n}10^k = 10^n\sum_{k=0}^{n}10^k + \sum_{k=0}^{n}10^k = \left(10^n+1\right)\sum_{k=0}^{n}10^k.\] It follows that the terms are \begin{align*} 121 &= 11\cdot11, \\ 11211 &= 101\cdot111, \\ 1112111 &= 1001\cdot1111, \\ & \ \vdots \end{align*} Therefore, there are $\boxed{\textbf{(A) } 0}$ prime numbers in this sequence.

~MRENTHUSIASM

Solution 2 (Simple Sums)

Observe how \begin{align*} 121 &= 110 + 11, \\ 11211 &= 11100 + 111, \\ 1112111 &= 1111000 + 1111, \\ & \ \vdots \end{align*} all take the form of \[\overbrace{111\ldots}^{n+1}\overbrace{00\ldots}^{n} + \overbrace{111\ldots}^{n+1} = \overbrace{111\ldots}^{n+1}(10^{n} + 1).\] Factoring each of the sums, we have $11(10+1), 111(100+1),$ and $1111(1000+1)$ respectively. With each number factored, there are $\boxed{\textbf{(A) } 0}$ primes in the set.

~ab2024

Solution 3 (Educated Guesses)

Note that it's obvious that $121$ is divisible by $11$ and $11211$ is divisible by $3;$ therefore, since this an AMC 10 problem 6, we may safely assume that we do not need to check two-digit prime divisibility or use obscure theorems. So, the answer is $\boxed{\textbf{(A) } 0}.$

~Dhillonr25

See Also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png