Difference between revisions of "Multinomial Theorem"

(Proof)
m
 
(5 intermediate revisions by 5 users not shown)
Line 6: Line 6:
 
where <math>\binom{n}{j_1; j_2; \ldots ; j_k}</math> is the [[multinomial coefficient]] <math>\binom{n}{j_1; j_2; \ldots ; j_k}=\dfrac{n!}{j_1!\cdot j_2!\cdots j_k!}</math>.
 
where <math>\binom{n}{j_1; j_2; \ldots ; j_k}</math> is the [[multinomial coefficient]] <math>\binom{n}{j_1; j_2; \ldots ; j_k}=\dfrac{n!}{j_1!\cdot j_2!\cdots j_k!}</math>.
  
Note that this is a direct generalization of the [[Binomial Theorem]]: when <math>k = 2</math> it simplifies to
+
Note that this is a direct generalization of the [[Binomial Theorem]], when <math>k = 2</math> it simplifies to
 
<cmath>
 
<cmath>
 
(a_1 + a_2)^n = \sum_{\substack{0\leq j_1, j_2 \leq n \ j_1 + j_2 = n}} \binom{n}{j_1; j_2} a_1^{j_1}a_2^{j_2} = \sum_{j = 0}^n \binom{n}{j} a_1^j a_2^{n - j}
 
(a_1 + a_2)^n = \sum_{\substack{0\leq j_1, j_2 \leq n \ j_1 + j_2 = n}} \binom{n}{j_1; j_2} a_1^{j_1}a_2^{j_2} = \sum_{j = 0}^n \binom{n}{j} a_1^j a_2^{n - j}
Line 12: Line 12:
  
 
== Proof ==
 
== Proof ==
==Proof by Induction==
+
===Proof by Induction===
 +
Proving the Multinomial Theorem by Induction
 +
 
 +
For a positive integer <math>k</math> and a non-negative integer <math>n</math>,
 +
<cmath>(x_1 + x_2 + x_3 + ... + x_{k-1} + x_k)^n = \sum_{b_1 + b_2 + b_3 + ... + b_{k-1} + b_k= n}{\binom{n}{b_1, b_2, b_3, ..., b_{k-1}, b_k} \prod_{j=1}^{k}{x_j^{b_j}}}</cmath>
 +
 
 +
<math>\bf Proof:</math>
 +
When <math>k=1</math> the result is true, and when <math>k=2</math> the result is the binomial theorem. Assume that <math>k \ge 3</math> and that the result is true for <math>k=p</math> When <math>k=p+1</math>
 +
<cmath>(x_1 + x_2 + x_3 + ... + x_{p-1} + x_p)^n = (x_1 + x_2 + x_3 + ... + x_{p-1} + (x_p +x_{p+1})^n</cmath>
 +
Treating <math>x_p + x_{p+1}</math> as a single term and using the induction hypothesis:
 +
<cmath>\sum_{b_1 + b_2 + b_3 + ... + b_{p-1} + B = n}{\binom{n}{b_1, b_2, b_3, ..., b_{p-1}, B} \cdot (x_p + x_{p+1})^B \cdot \prod_{j=1}^{p-1}{x_j^{b_j}}}</cmath>
 +
By the Binomial Theorem, this becomes:
 +
<cmath>\sum_{b_1 + b_2 + b_3 + ... + b_{p-1} + B = n}{\binom{n}{b_1, b_2, b_3, ..., b_{p-1}, B}} (\prod_{j=1}^{p-1}{x_j^{b_j}}) \cdot \sum_{b_p + b_{p+1} = B}{\binom{B}{b_p} \cdot x_p^{b_p} x_{p+1}^{b_{p+1}}}</cmath>
 +
Since <math>\binom{n}{b_1, b_2, b_3, ... ,b_p, B}\binom{B}{b_p} = \binom{n}{b_1, b_2, b_3, ... ,b_p, b_{p+1}}</math>, this can be rewritten as:
 +
<cmath>\sum_{b_1 + b_2 + ...  b_p + b_{p+1}= n}{\binom{n}{b_1, b_2, b_3, ..., b_p, b_{p+1}}\prod_{j=1}^{k}{x_j^{b_j}}}</cmath>
 +
 
 
=== Combinatorial proof ===
 
=== Combinatorial proof ===
Keep on moving...
 
 
{{stub}}
 
{{stub}}
  
Line 30: Line 44:
  
 
===Olympiad===
 
===Olympiad===
{{problem}}
 
 
{{stub}}
 
 
[[Category:Theorems]]
 
[[Category:Theorems]]
 
[[Category:Combinatorics]]
 
[[Category:Combinatorics]]
 
[[Category:Multinomial Theorem]]
 
[[Category:Multinomial Theorem]]

Latest revision as of 18:37, 4 January 2023

The Multinomial Theorem states that \[(a_1+a_2+\cdots+a_k)^n=\sum_{\substack{j_1,j_2,\ldots,j_k \\ 0 \leq j_i \leq n \textrm{ for each } i \\ \textrm{and } j_1 + \ldots + j_k = n}}\binom{n}{j_1; j_2; \ldots ; j_k}a_1^{j_1}a_2^{j_2}\cdots a_k^{j_k}\] where $\binom{n}{j_1; j_2; \ldots ; j_k}$ is the multinomial coefficient $\binom{n}{j_1; j_2; \ldots ; j_k}=\dfrac{n!}{j_1!\cdot j_2!\cdots j_k!}$.

Note that this is a direct generalization of the Binomial Theorem, when $k = 2$ it simplifies to \[(a_1 + a_2)^n = \sum_{\substack{0\leq j_1, j_2 \leq n \\ j_1 + j_2 = n}} \binom{n}{j_1; j_2} a_1^{j_1}a_2^{j_2} = \sum_{j = 0}^n \binom{n}{j} a_1^j a_2^{n - j}\]

Proof

Proof by Induction

Proving the Multinomial Theorem by Induction

For a positive integer $k$ and a non-negative integer $n$, \[(x_1 + x_2 + x_3 + ... + x_{k-1} + x_k)^n = \sum_{b_1 + b_2 + b_3 + ... + b_{k-1} + b_k= n}{\binom{n}{b_1, b_2, b_3, ..., b_{k-1}, b_k} \prod_{j=1}^{k}{x_j^{b_j}}}\]

$\bf Proof:$ When $k=1$ the result is true, and when $k=2$ the result is the binomial theorem. Assume that $k \ge 3$ and that the result is true for $k=p$ When $k=p+1$ \[(x_1 + x_2 + x_3 + ... + x_{p-1} + x_p)^n = (x_1 + x_2 + x_3 + ... + x_{p-1} + (x_p +x_{p+1})^n\] Treating $x_p + x_{p+1}$ as a single term and using the induction hypothesis: \[\sum_{b_1 + b_2 + b_3 + ... + b_{p-1} + B = n}{\binom{n}{b_1, b_2, b_3, ..., b_{p-1}, B} \cdot (x_p + x_{p+1})^B \cdot \prod_{j=1}^{p-1}{x_j^{b_j}}}\] By the Binomial Theorem, this becomes: \[\sum_{b_1 + b_2 + b_3 + ... + b_{p-1} + B = n}{\binom{n}{b_1, b_2, b_3, ..., b_{p-1}, B}} (\prod_{j=1}^{p-1}{x_j^{b_j}}) \cdot \sum_{b_p + b_{p+1} = B}{\binom{B}{b_p} \cdot x_p^{b_p} x_{p+1}^{b_{p+1}}}\] Since $\binom{n}{b_1, b_2, b_3, ... ,b_p, B}\binom{B}{b_p} = \binom{n}{b_1, b_2, b_3, ... ,b_p, b_{p+1}}$, this can be rewritten as: \[\sum_{b_1 + b_2 + ...  b_p + b_{p+1}= n}{\binom{n}{b_1, b_2, b_3, ..., b_p, b_{p+1}}\prod_{j=1}^{k}{x_j^{b_j}}}\]

Combinatorial proof

This article is a stub. Help us out by expanding it.

Problems

Intermediate

$(x+y+z)^{2006}+(x-y-z)^{2006}$

is simplified by expanding it and combining like terms. How many terms are in the simplified expression?

$\mathrm{(A) \ } 6018\qquad \mathrm{(B) \ } 671,676\qquad \mathrm{(C) \ } 1,007,514\qquad \mathrm{(D) \ } 1,008,016\qquad\mathrm{(E) \ }  2,015,028$

(Source: 2006 AMC 12A Problem 24)

Olympiad