Difference between revisions of "1985 IMO Problems/Problem 5"

(Solution)
 
(3 intermediate revisions by 2 users not shown)
Line 5: Line 5:
 
== Solution ==
 
== Solution ==
 
<math>M</math> is the Miquel Point of quadrilateral <math>ACNK</math>, so there is a spiral similarity centered at <math>M</math> that takes <math>KN</math> to <math>AC</math>. Let <math>M_1</math> be the midpoint of <math>KA</math> and <math>M_2</math> be the midpoint of <math>NC</math>. Thus the spiral similarity must also send <math>M_1</math> to <math>M_2</math> and so <math>BMM_1 M_2</math> is cyclic. <math>OM_1 B M_2</math> is also cyclic with diameter <math>BO</math> and thus <math>M</math> must lie on the same circumcircle as <math>B</math>, <math>M_1</math>, and <math>M_2</math> so <math>\angle OMB = 90^{\circ}</math>.
 
<math>M</math> is the Miquel Point of quadrilateral <math>ACNK</math>, so there is a spiral similarity centered at <math>M</math> that takes <math>KN</math> to <math>AC</math>. Let <math>M_1</math> be the midpoint of <math>KA</math> and <math>M_2</math> be the midpoint of <math>NC</math>. Thus the spiral similarity must also send <math>M_1</math> to <math>M_2</math> and so <math>BMM_1 M_2</math> is cyclic. <math>OM_1 B M_2</math> is also cyclic with diameter <math>BO</math> and thus <math>M</math> must lie on the same circumcircle as <math>B</math>, <math>M_1</math>, and <math>M_2</math> so <math>\angle OMB = 90^{\circ}</math>.
 +
 +
==Solution 2==
 +
[[File:1985 IMO.png|450px|right]]
 +
Let <math>\Omega, \Omega', \omega</math> and <math>O,O',O''</math> be the circumcircles and circumcenters of <math>AKNC, ABC, BNKM,</math> respectively.
 +
 +
Let <math>\angle ACB = \gamma, AKNC</math> is cyclic <math>\implies \angle BKN = \gamma.</math>
 +
 +
The radius of <math>\omega</math> is <math>MO'' = BO'' = \frac {BN}{2 \sin \gamma}.</math>
 +
 +
Let <math>D</math> and <math>E</math> be midpoints of <math>BC</math> and  <math>NC</math> respectively.
 +
 +
<math>OE \perp BC, OD \perp BC, OO' \perp AC, DE = \frac {BC}{2} - \frac {NC}{2} = \frac {BN}{2}</math>
 +
<math>\implies OO' = \frac {DE}{\sin \gamma} = \frac {BN}{2 \sin \gamma} = MO''.</math>
 +
 +
<math>M</math> is the Miquel Point of quadrilateral <math>ACNK,</math> so  <math>MO''O'O</math> is cyclic.
 +
<math>MO''O'O</math> is trapezium <math>\implies O''O' || MO.</math>  <math>O''O' \perp BM \implies MO\perp BM</math> as desired.
 +
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
 +
==Solution 3 (No Miquel's point)==
 +
Consider <math>\triangle MKA </math> and <math>\triangle MNC</math>, they are similar because <math>\angle MAK</math> = <math>\angle MCN</math>, and also <math>\angle MKA = \angle MNC</math>.
 +
 +
Now draw <math>OP \perp AB</math>, and intersecting <math>AB</math> at <math>P</math>; <math>OQ \perp BC</math>, at <math>Q</math>. Naturally <math>OP</math> bisects <math>AK</math>, and <math>OQ</math> bisects <math>CN</math>. We claim <math>\triangle MAP \sim \triangle MCQ</math>, because
 +
<math>\frac {AP}{CQ} = \frac {AK}{CN} = \frac {AM}{CB}.</math>
 +
 +
Thus <math>\angle AMP = \angle CMQ</math>, this implies <math>\angle PMQ = \angle AMC = \angle ABC = \angle PBQ</math>. Obviously BMPQ is cyclic, and so is BPOQ. Finally, we have <math>OM \perp MB</math>. ('''by gougutheorem''')
 +
 +
== See Also ==
 +
*[[Miquel's point]]
 +
{{IMO box|year=1985|num-b=4|num-a=6}}

Latest revision as of 12:35, 18 January 2023

Problem

A circle with center $O$ passes through the vertices $A$ and $C$ of the triangle $ABC$ and intersects the segments $AB$ and $BC$ again at distinct points $K$ and $N$ respectively. Let $M$ be the point of intersection of the circumcircles of triangles $ABC$ and $KBN$ (apart from $B$). Prove that $\angle OMB = 90^{\circ}$.

Solution

$M$ is the Miquel Point of quadrilateral $ACNK$, so there is a spiral similarity centered at $M$ that takes $KN$ to $AC$. Let $M_1$ be the midpoint of $KA$ and $M_2$ be the midpoint of $NC$. Thus the spiral similarity must also send $M_1$ to $M_2$ and so $BMM_1 M_2$ is cyclic. $OM_1 B M_2$ is also cyclic with diameter $BO$ and thus $M$ must lie on the same circumcircle as $B$, $M_1$, and $M_2$ so $\angle OMB = 90^{\circ}$.

Solution 2

1985 IMO.png

Let $\Omega, \Omega', \omega$ and $O,O',O''$ be the circumcircles and circumcenters of $AKNC, ABC, BNKM,$ respectively.

Let $\angle ACB = \gamma, AKNC$ is cyclic $\implies \angle BKN = \gamma.$

The radius of $\omega$ is $MO'' = BO'' = \frac {BN}{2 \sin \gamma}.$

Let $D$ and $E$ be midpoints of $BC$ and $NC$ respectively.

$OE \perp BC, OD \perp BC, OO' \perp AC, DE = \frac {BC}{2} - \frac {NC}{2} = \frac {BN}{2}$ $\implies OO' = \frac {DE}{\sin \gamma} = \frac {BN}{2 \sin \gamma} = MO''.$

$M$ is the Miquel Point of quadrilateral $ACNK,$ so $MO''O'O$ is cyclic. $MO''O'O$ is trapezium $\implies O''O' || MO.$ $O''O' \perp BM \implies MO\perp BM$ as desired.

vladimir.shelomovskii@gmail.com, vvsss

Solution 3 (No Miquel's point)

Consider $\triangle MKA$ and $\triangle MNC$, they are similar because $\angle MAK$ = $\angle MCN$, and also $\angle MKA = \angle MNC$.

Now draw $OP \perp AB$, and intersecting $AB$ at $P$; $OQ \perp BC$, at $Q$. Naturally $OP$ bisects $AK$, and $OQ$ bisects $CN$. We claim $\triangle MAP \sim \triangle MCQ$, because $\frac {AP}{CQ} = \frac {AK}{CN} = \frac {AM}{CB}.$

Thus $\angle AMP = \angle CMQ$, this implies $\angle PMQ = \angle AMC = \angle ABC = \angle PBQ$. Obviously BMPQ is cyclic, and so is BPOQ. Finally, we have $OM \perp MB$. (by gougutheorem)

See Also

1985 IMO (Problems) • Resources
Preceded by
Problem 4
1 2 3 4 5 6 Followed by
Problem 6
All IMO Problems and Solutions