Difference between revisions of "1988 IMO Problems/Problem 6"
(New page: Let <math>a</math> and <math>b</math> be positive integers such that <math>ab + 1</math> divides <math>a^{2} + b^{2}</math>. Show that <math> \frac {a^{2} + b^{2}}{ab + 1} </math> is the s...) |
(template) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Let <math>a</math> and <math>b</math> be positive integers such that <math>ab + 1</math> divides <math>a^{2} + b^{2}</math>. Show that | Let <math>a</math> and <math>b</math> be positive integers such that <math>ab + 1</math> divides <math>a^{2} + b^{2}</math>. Show that | ||
<math> | <math> | ||
Line 13: | Line 14: | ||
This construction works whenever there exists a solution <math>(a,b)</math> for a fixed <math>k</math>, hence <math>k</math> is always a perfect square. | This construction works whenever there exists a solution <math>(a,b)</math> for a fixed <math>k</math>, hence <math>k</math> is always a perfect square. | ||
− | == | + | {{IMO box|year=1988|num-b=5|after=Last question}} |
− | |||
− |
Revision as of 19:56, 25 October 2007
Problem
Let and be positive integers such that divides . Show that is the square of an integer.
Solution
Choose integers such that Now, for fixed , out of all pairs choose the one with the lowest value of . Label . Thus, is a quadratic in . Should there be another root, , the root would satisfy: Thus, isn't a positive integer (if it were, it would contradict the minimality condition). But , so is an integer; hence, . In addition, so that . We conclude that so that .
This construction works whenever there exists a solution for a fixed , hence is always a perfect square.
1988 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last question |
All IMO Problems and Solutions |