Difference between revisions of "2015 AMC 8 Problems/Problem 6"
Megaboy6679 (talk | contribs) m (→Solution 2) |
m |
||
Line 4: | Line 4: | ||
<math>\textbf{(A) }100\qquad\textbf{(B) }420\qquad\textbf{(C) }500\qquad\textbf{(D) }609\qquad \textbf{(E) }701</math> | <math>\textbf{(A) }100\qquad\textbf{(B) }420\qquad\textbf{(C) }500\qquad\textbf{(D) }609\qquad \textbf{(E) }701</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solutions== | ==Solutions== | ||
Line 17: | Line 12: | ||
Splitting the isosceles triangle in half, we get a right triangle with hypotenuse <math>29</math> and leg <math>21</math>. Using the Pythagorean Theorem , we know the height is <math>\sqrt{29^2-21^2}=20</math>. Now that we know the height, the area is | Splitting the isosceles triangle in half, we get a right triangle with hypotenuse <math>29</math> and leg <math>21</math>. Using the Pythagorean Theorem , we know the height is <math>\sqrt{29^2-21^2}=20</math>. Now that we know the height, the area is | ||
<math>\dfrac{(20)(42)}{2} = \boxed{\textbf{(B)}~420}</math>. | <math>\dfrac{(20)(42)}{2} = \boxed{\textbf{(B)}~420}</math>. | ||
+ | |||
+ | ==Video Solution 1== | ||
+ | |||
+ | https://www.youtube.com/watch?v=Bl3_W2i5zwc | ||
==Video Solution 2== | ==Video Solution 2== |
Revision as of 03:51, 26 January 2023
Contents
[hide]Problem
In , , and . What is the area of ?
Solutions
Solution 1
We know the semi-perimeter of is . Next, we use Heron's Formula to find that the area of the triangle is just .
Solution 2 (easier)
Splitting the isosceles triangle in half, we get a right triangle with hypotenuse and leg . Using the Pythagorean Theorem , we know the height is . Now that we know the height, the area is .
Video Solution 1
https://www.youtube.com/watch?v=Bl3_W2i5zwc
Video Solution 2
~savannahsolver
See Also
2015 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.