Difference between revisions of "2013 AMC 12A Problems/Problem 21"
(→Solution 6 (super quick)) |
(→Solution 6 (super quick)) |
||
Line 91: | Line 91: | ||
~rayfish | ~rayfish | ||
+ | |||
+ | === Solution 7 (Not rigorous but it works) === | ||
+ | Start small from <math>log(3+log2)</math>. Because <math>log2</math> is close to <math>0</math>, the expression is close to <math>log 3</math>. This continues for the 1 digit numbers. However, when we get to <math>log(11+log10)</math>, <math>log10=1</math> so the expression equals <math>log12</math>. We can round down how much each new log contributes to the expression as an approximate answer. There are 90 2 digit numbers, 900 3 digit numbers, and 1014 4 digit numbers that increase the expression. <math>1000< 90 \cdot 1 + 900 \cdot 2 + 1014 \cdot 3< 10000</math>, so it increases between 3 and 4. The answer is <math>\boxed{\textbf{(A)}}</math>. | ||
+ | |||
+ | ~dragnin | ||
=== Video Solution by Richard Rusczyk === | === Video Solution by Richard Rusczyk === |
Revision as of 14:48, 9 June 2023
Contents
[hide]Problem
Consider . Which of the following intervals contains ?
Solutions
Solution 1
Let and , and from the problem description,
We can reason out an approximation, by ignoring the :
And a better approximation, by plugging in our first approximation for in our original definition for :
And an even better approximation:
Continuing this pattern, obviously, will eventually terminate at , in other words our original definition of .
However, at , going further than will not distinguish between our answer choices. is nearly indistinguishable from .
So we take and plug in.
Since , we know . This gives us our answer range:
Solution 2
Suppose . Then . So if , then . So . Repeating, we then get . This is clearly absurd (the RHS continues to grow more than exponentially for each iteration). So, is not greater than . So . But this leaves only one answer, so we are done.
Solution 3
Define , and We are looking for . First we show
Lemma. For any integer , if then .
Proof. First note that . Let . Then , so . Suppose the claim is true for . Then . The Lemma is thus proved by induction.
Finally, note that so that the Lemma implies that . This means that , which leaves us with only one option .
Solution 4
Define , and We start with a simple observation:
Lemma. For , .
Proof. Since , we have , so .
It follows that , and so on.
Thus .
Then .
It follows that .
Finally, we get , which leaves us with only option .
Solution 5 (nonrigorous + abusing answer choices.)
Intuitively, you can notice that , therefore (by the answer choices) . We can then say:
The only answer choice that is possible given this information is
Solution 6 (super quick)
Let . From the answer choices, we see that . Since grows very slowly, we can assume . Therefore, .
~rayfish
Solution 7 (Not rigorous but it works)
Start small from . Because is close to , the expression is close to . This continues for the 1 digit numbers. However, when we get to , so the expression equals . We can round down how much each new log contributes to the expression as an approximate answer. There are 90 2 digit numbers, 900 3 digit numbers, and 1014 4 digit numbers that increase the expression. , so it increases between 3 and 4. The answer is .
~dragnin
Video Solution by Richard Rusczyk
https://artofproblemsolving.com/videos/amc/2013amc12a/360
See Also
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.