Difference between revisions of "2014 AMC 12A Problems/Problem 2"

(added box+MAA notice)
m (Problem: add dollar signs)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
At the theater children get in for half price.  The price for <math>5</math> adult tickets and <math>4</math> child tickets is <math>24.50</math>.  How much would <math>8</math> adult tickets and <math>6</math> child tickets cost?
+
At the theater children get in for half price.  The price for <math>5</math> adult tickets and <math>4</math> child tickets is <math>$24.50</math>.  How much would <math>8</math> adult tickets and <math>6</math> child tickets cost?
 
 
<math>\textbf{(A) }35\qquad
 
\textbf{(B) }38.50\qquad
 
\textbf{(C) }40\qquad
 
\textbf{(D) }42\qquad
 
\textbf{(E) }42.50</math>
 
  
 +
<math>\textbf{(A) }$35\qquad
 +
\textbf{(B) }$38.50\qquad
 +
\textbf{(C) }$40\qquad
 +
\textbf{(D) }$42\qquad
 +
\textbf{(E) }$42.50</math>
  
 
== Solution ==
 
== Solution ==
Line 14: Line 13:
 
<cmath>\begin{eqnarray*}
 
<cmath>\begin{eqnarray*}
 
5x + 4(x/2) = 7x &=& 24.50\
 
5x + 4(x/2) = 7x &=& 24.50\
 
 
x &=& 3.50\
 
x &=& 3.50\
 
\end{eqnarray*}</cmath>
 
\end{eqnarray*}</cmath>
Line 21: Line 19:
  
 
<cmath>\begin{eqnarray*}
 
<cmath>\begin{eqnarray*}
 
 
8x + 6(x/2) &=& 8(3.50) + 3(3.50)\  
 
8x + 6(x/2) &=& 8(3.50) + 3(3.50)\  
 
&=&\boxed{\textbf{(B)}\ \ 38.50}\
 
&=&\boxed{\textbf{(B)}\ \ 38.50}\
 
 
\end{eqnarray*}</cmath>
 
\end{eqnarray*}</cmath>
 
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2014|ab=A|num-b=1|num-a=3}}
 
{{AMC12 box|year=2014|ab=A|num-b=1|num-a=3}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 16:18, 25 July 2023

Problem

At the theater children get in for half price. The price for $5$ adult tickets and $4$ child tickets is $$24.50$. How much would $8$ adult tickets and $6$ child tickets cost?

$\textbf{(A) }$35\qquad \textbf{(B) }$38.50\qquad \textbf{(C) }$40\qquad \textbf{(D) }$42\qquad \textbf{(E) }$42.50$

Solution

Suppose $x$ is the price of an adult ticket. The price of a child ticket would be $\frac{x}{2}$.

\begin{eqnarray*} 5x + 4(x/2) = 7x &=& 24.50\\ x &=& 3.50\\ \end{eqnarray*}

Plug in for 8 adult tickets and 6 child tickets.

\begin{eqnarray*} 8x + 6(x/2) &=& 8(3.50) + 3(3.50)\\  &=&\boxed{\textbf{(B)}\ \ 38.50}\\ \end{eqnarray*}

See Also

2014 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png