Difference between revisions of "1987 AJHSME Problems/Problem 15"

m
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
The sale ad read: "Buy three tires at the regular price and get the fourth tire for <dollar/>3." Sam paid <dollar/>240 for a set of four tires at the sale.  What was the regular price of one tire?
+
The sale ad read: "Buy three tires at the regular price and get the fourth tire for 3 dollars." Sam paid 240 dollars for a set of four tires at the sale.  What was the regular price of one tire?
  
 
<math>\text{(A)}\ 59.25\text{ dollars} \qquad \text{(B)}\ 60\text{ dollars} \qquad \text{(C)}\ 70\text{ dollars} \qquad \text{(D)}\ 79\text{ dollars} \qquad \text{(E)}\ 80\text{ dollars}</math>
 
<math>\text{(A)}\ 59.25\text{ dollars} \qquad \text{(B)}\ 60\text{ dollars} \qquad \text{(C)}\ 70\text{ dollars} \qquad \text{(D)}\ 79\text{ dollars} \qquad \text{(E)}\ 80\text{ dollars}</math>
Line 9: Line 9:
 
Let the regular price of one tire be <math>x</math>.  We have  
 
Let the regular price of one tire be <math>x</math>.  We have  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
3x+3=240 &\Rightarrow 3x=247 \
+
3x+3=240 &\Rightarrow 3x=237 \
 
&\Rightarrow x=79  
 
&\Rightarrow x=79  
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
 
<math>\boxed{\text{D}}</math>
 
<math>\boxed{\text{D}}</math>
 +
Good Job!
  
 
==See Also==
 
==See Also==

Latest revision as of 15:40, 30 July 2023

Problem

The sale ad read: "Buy three tires at the regular price and get the fourth tire for 3 dollars." Sam paid 240 dollars for a set of four tires at the sale. What was the regular price of one tire?

$\text{(A)}\ 59.25\text{ dollars} \qquad \text{(B)}\ 60\text{ dollars} \qquad \text{(C)}\ 70\text{ dollars} \qquad \text{(D)}\ 79\text{ dollars} \qquad \text{(E)}\ 80\text{ dollars}$

Solution

Let the regular price of one tire be $x$. We have \begin{align*} 3x+3=240 &\Rightarrow 3x=237 \\ &\Rightarrow x=79  \end{align*}

$\boxed{\text{D}}$ Good Job!

See Also

1987 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png