Difference between revisions of "1978 AHSME Problems/Problem 25"

m (Problem)
m (Problem)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math>u</math> be a positive number. Consider the set <math>S</math> of all points whose rectangular coordinates <math>(x, y )</math> satisfy all of the following conditions:
+
Let <math>a</math> be a positive number. Consider the set <math>S</math> of all points whose rectangular coordinates <math>(x, y )</math> satisfy all of the following conditions:
  
 
<math>\text{(i) }\frac{a}{2}\le x\le 2a\qquad \text{(ii) }\frac{a}{2}\le y\le 2a\qquad \text{(iii) }x+y\ge a\ \ \qquad \text{(iv) }x+a\ge y\qquad \text{(v) }y+a\ge x</math>
 
<math>\text{(i) }\frac{a}{2}\le x\le 2a\qquad \text{(ii) }\frac{a}{2}\le y\le 2a\qquad \text{(iii) }x+y\ge a\ \ \qquad \text{(iv) }x+a\ge y\qquad \text{(v) }y+a\ge x</math>
Line 9: Line 9:
  
 
==Solution==
 
==Solution==
<math>\fbox{D}</math>
+
Draw a picture. The answer is <math>\fbox{D}</math>.

Latest revision as of 17:31, 28 August 2023

Problem

Let $a$ be a positive number. Consider the set $S$ of all points whose rectangular coordinates $(x, y )$ satisfy all of the following conditions:

$\text{(i) }\frac{a}{2}\le x\le 2a\qquad \text{(ii) }\frac{a}{2}\le y\le 2a\qquad \text{(iii) }x+y\ge a\\ \\ \qquad \text{(iv) }x+a\ge y\qquad \text{(v) }y+a\ge x$

The boundary of set $S$ is a polygon with

$\textbf{(A) }3\text{ sides}\qquad \textbf{(B) }4\text{ sides}\qquad \textbf{(C) }5\text{ sides}\qquad \textbf{(D) }6\text{ sides}\qquad \textbf{(E) }7\text{ sides}$

Solution

Draw a picture. The answer is $\fbox{D}$.