Difference between revisions of "2022 AMC 12A Problems/Problem 13"
MRENTHUSIASM (talk | contribs) m |
|||
Line 41: | Line 41: | ||
~Education, the Study of Everything | ~Education, the Study of Everything | ||
+ | |||
+ | ==Video Solution 1 (Simple and Fun!!!)== | ||
+ | https://youtu.be/7yAh4MtJ8a8?si=9MkBH5Rq3qhtBgui | ||
+ | |||
+ | ~Math-X | ||
== See Also == | == See Also == | ||
{{AMC12 box|year=2022|ab=A|num-b=12|num-a=14}} | {{AMC12 box|year=2022|ab=A|num-b=12|num-a=14}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 14:38, 25 October 2023
Contents
Problem
Let be the region in the complex plane consisting of all complex numbers that can be written as the sum of complex numbers and , where lies on the segment with endpoints and , and has magnitude at most . What integer is closest to the area of ?
Solution
If is a complex number and , then the magnitude (length) of is . Therefore, has a magnitude of 5. If has a magnitude of at most one, that means for each point on the segment given by , the bounds of the region could be at most 1 away. Alone the line, excluding the endpoints, a rectangle with a width of 2 and a length of 5, the magnitude, would be formed. At the endpoints, two semicircles will be formed with a radius of 1 for a total area of . Therefore, the total area is .
~juicefruit
Video Solution 1 (Quick and Simple)
~Education, the Study of Everything
Video Solution 1 (Simple and Fun!!!)
https://youtu.be/7yAh4MtJ8a8?si=9MkBH5Rq3qhtBgui
~Math-X
See Also
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 12 |
Followed by Problem 14 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.