Difference between revisions of "2011 IMO Problems/Problem 3"

(Added my solution)
 
Line 20: Line 20:
  
 
==See Also==
 
==See Also==
*[[IMO Problems and Solutions]]
+
 
 +
{{IMO box|year=2011|num-b=2|num-a=4}}
  
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Functional Equation Problems]]
 
[[Category:Functional Equation Problems]]

Latest revision as of 00:20, 19 November 2023

Let $f: \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies \[f(x + y) \le yf(x) + f(f(x))\] for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \le 0$.

Solution

Let $P(x,y)$ be the given assertion. Comparing $P(x,f(y)-x)$ and $P(y,f(x)-y)$ yields, \[xf(x)+yf(y)\leq 2f(x)f(y).\] $y\mapsto 2f(x)\implies xf(x)\leq 0. \qquad (*)$


$\textbf{Claim: }f(k)\leq 0~~\forall k.$

$Proof.$ Suppose $\exists k:f(k)>0,$ then \[f(k+y)\leq yf(k)+f(f(k)).\] Now $y\to -\infty$ implies that $\lim_{x\to -\infty} f(x)=-\infty.$ $P(x,z-x)\implies f(z)\leq (z-x)f(x)+f(f(x)).$

Then $x\to -\infty,$ yields a contradiction. $\blacksquare$


From $(*)$ we get $f(x)=0,\forall x<0.$ $P(0,f(0))\implies f(0)\geq 0,$ thus we get $f(0)=0,$ as desired. $\square$

                           ~ZETA_in_olympiad

See Also

2011 IMO (Problems) • Resources
Preceded by
Problem 2
1 2 3 4 5 6 Followed by
Problem 4
All IMO Problems and Solutions