Difference between revisions of "2001 AMC 12 Problems/Problem 9"

m (Problem)
(Solution 3)
 
(12 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math>f</math> be a function satisfying <math>f(xy) = \frac{f(x)}y</math> for all positive real numbers <math>x</math> and <math>y</math>, and <math>f(500) =3</math>. What is <math>f(600)</math>?
+
<!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>Let <math>f</math> be a function satisfying <math>f(xy) = \frac{f(x)}y</math> for all positive real numbers <math>x</math> and <math>y</math>. If <math>f(500) =3</math>, what is the value of <math>f(600)</math>?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude>
  
 
<math>(\mathrm{A})\ 1 \qquad (\mathrm{B})\ 2 \qquad (\mathrm{C})\ \frac52 \qquad (\mathrm{D})\ 3 \qquad (\mathrm{E})\ \frac{18}5</math>
 
<math>(\mathrm{A})\ 1 \qquad (\mathrm{B})\ 2 \qquad (\mathrm{C})\ \frac52 \qquad (\mathrm{D})\ 3 \qquad (\mathrm{E})\ \frac{18}5</math>
  
== Solution ==
+
== Solution 1 ==
<math>f(500\cdot\frac65) = \frac3{\frac65} = \frac52</math>, so the answer is <math>\mathrm{C}</math>.
+
Letting <math>x = 500</math> and <math>y = \dfrac65</math> in the given equation, we get <math>f(500\cdot\frac65) = \frac3{\frac65} = \frac52</math>, or <math>f(600) = \boxed{\textbf{(C) } \frac52}</math>.
 +
 
 +
== Solution 2 ==
 +
The only function that satisfies the given condition is <math>y = \frac{k}{x}</math>, for some constant <math>k</math>. Thus, the answer is <math>\frac{500 \cdot 3}{600} = \boxed{\textbf{(C) } \frac52}</math>.
 +
 
 +
==Solution 3==
 +
Note that the equation given above is symmetric, so we have <math>x \cdot f(x)=y \cdot f(y)</math>. Plugging in <math>x=500</math> and <math>y=600</math> gives <math>f(y)=\boxed{\textbf{(C) } \frac52}</math>.
 +
 
 +
== See Also ==
 +
 
 +
{{AMC12 box|year=2001|num-b=8|num-a=10}}
 +
{{MAA Notice}}

Latest revision as of 23:33, 29 December 2023

Problem

Let $f$ be a function satisfying $f(xy) = \frac{f(x)}y$ for all positive real numbers $x$ and $y$. If $f(500) =3$, what is the value of $f(600)$?

$(\mathrm{A})\ 1 \qquad (\mathrm{B})\ 2 \qquad (\mathrm{C})\ \frac52 \qquad (\mathrm{D})\ 3 \qquad (\mathrm{E})\ \frac{18}5$

Solution 1

Letting $x = 500$ and $y = \dfrac65$ in the given equation, we get $f(500\cdot\frac65) = \frac3{\frac65} = \frac52$, or $f(600) = \boxed{\textbf{(C) } \frac52}$.

Solution 2

The only function that satisfies the given condition is $y = \frac{k}{x}$, for some constant $k$. Thus, the answer is $\frac{500 \cdot 3}{600} = \boxed{\textbf{(C) } \frac52}$.

Solution 3

Note that the equation given above is symmetric, so we have $x \cdot f(x)=y \cdot f(y)$. Plugging in $x=500$ and $y=600$ gives $f(y)=\boxed{\textbf{(C) } \frac52}$.

See Also

2001 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png