Difference between revisions of "De Moivre's Theorem"
m |
(Tag: Undo) |
||
(24 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
− | + | '''DeMoivre's Theorem''' is a very useful theorem in the mathematical fields of [[complex numbers]]. It allows complex numbers in [[polar form]] to be easily raised to certain powers. It states that for <math>x\in\mathbb{R}</math> and <math>n\in\mathbb{Z}</math>, <math>\left(\cos x+i\sin x\right)^n=\cos(nx)+i\sin(nx)</math>. | |
− | |||
− | '''DeMoivre's Theorem''' is a very useful theorem in the mathematical fields of [[complex numbers]]. It allows complex numbers in [[polar form]] to be easily raised to certain powers. It states that for <math>x\in\mathbb{R}</math> and <math>n\in\mathbb{ | ||
== Proof == | == Proof == | ||
Line 10: | Line 8: | ||
:Assume true for the case <math>n=k</math>. Now, the case of <math>n=k+1</math>: | :Assume true for the case <math>n=k</math>. Now, the case of <math>n=k+1</math>: | ||
− | + | <cmath>\begin{align*} | |
+ | (\cos x+i \sin x)^{k+1} & =(\cos x+i \sin x)^{k}(\cos x+i \sin x) & \text { by Exponential laws } \\ | ||
+ | & =[\cos (k x)+i \sin (k x)](\cos x+i \sin x) & \text { by the Assumption in Step II } \\ | ||
+ | & =\cos (k x) \cos x-\sin (k x) \sin x+i[\cos (k x) \sin x+\sin (k x) \cos x] & \\ | ||
+ | & =\operatorname{cis}((k+1)(x)) & \text { Various Trigonometric Identities } | ||
+ | \end{align*}</cmath> | ||
:Therefore, the result is true for all positive integers <math>n</math>. | :Therefore, the result is true for all positive integers <math>n</math>. | ||
Line 18: | Line 21: | ||
*If <math>n<0</math>, one must consider <math>n=-m</math> when <math>m</math> is a positive integer. | *If <math>n<0</math>, one must consider <math>n=-m</math> when <math>m</math> is a positive integer. | ||
− | + | <cmath>\begin{align*} | |
+ | (\operatorname{cis} x)^{n} &=(\operatorname{cis} x)^{-m} \\ | ||
+ | &=\frac{1}{(\operatorname{cis} x)^{m}} \\ | ||
+ | &=\frac{1}{\operatorname{cis}(m x)} \\ | ||
+ | &=\cos (m x)-i \sin (m x) & \text { rationalization of the denominator } \\ | ||
+ | &=\operatorname{cis}(-m x) \\ | ||
+ | &=\operatorname{cis}(n x) | ||
+ | \end{align*}</cmath> | ||
And thus, the formula proves true for all integral values of <math>n</math>. <math>\Box</math> | And thus, the formula proves true for all integral values of <math>n</math>. <math>\Box</math> | ||
− | Note that from the functional equation <math>f(x)^n = f(nx)</math> where <math>f(x) = \cos x + i\sin x</math>, we see that <math>f(x)</math> behaves like an exponential function. Indeed, [[Euler's | + | Note that from the functional equation <math>f(x)^n = f(nx)</math> where <math>f(x) = \cos x + i\sin x</math>, we see that <math>f(x)</math> behaves like an exponential function. Indeed, [[Euler's identity]] states that <math>e^{ix} = \cos x+i\sin x</math>. This extends De Moivre's theorem to all <math>n\in \mathbb{R}</math>. |
+ | |||
+ | ==Generalization== | ||
+ | ==See Also== | ||
[[Category:Theorems]] | [[Category:Theorems]] | ||
[[Category:Complex numbers]] | [[Category:Complex numbers]] |
Revision as of 00:42, 11 January 2024
DeMoivre's Theorem is a very useful theorem in the mathematical fields of complex numbers. It allows complex numbers in polar form to be easily raised to certain powers. It states that for and , .
Proof
This is one proof of De Moivre's theorem by induction.
- If , for , the case is obviously true.
- Assume true for the case . Now, the case of :
- Therefore, the result is true for all positive integers .
- If , the formula holds true because . Since , the equation holds true.
- If , one must consider when is a positive integer.
And thus, the formula proves true for all integral values of .
Note that from the functional equation where , we see that behaves like an exponential function. Indeed, Euler's identity states that . This extends De Moivre's theorem to all .