Difference between revisions of "1994 AJHSME Problems/Problem 25"

(Created page with "==Problem== Find the sum of the digits in the answer to <math>\underbrace{9999\cdots 99}_{94\text{ nines}} \times \underbrace{4444\cdots 44}_{94\text{ fours}}</math> where a s...")
 
 
(12 intermediate revisions by 9 users not shown)
Line 8: Line 8:
  
 
<math>\text{(A)}\ 846 \qquad \text{(B)}\ 855 \qquad \text{(C)}\ 945 \qquad \text{(D)}\ 954 \qquad \text{(E)}\ 1072</math>
 
<math>\text{(A)}\ 846 \qquad \text{(B)}\ 855 \qquad \text{(C)}\ 945 \qquad \text{(D)}\ 954 \qquad \text{(E)}\ 1072</math>
 +
 +
==Solution 1==
 +
 +
Notice that:
 +
 +
<math>9 \cdot 4 = 36</math> and <math>3+6 = 9 = 9 \cdot 1</math>
 +
 +
<math>99 \cdot 44 = 4356</math> and <math>4+5+3+6 = 18 = 9 \cdot 2</math>
 +
 +
So the sum of the digits of <math>x</math> 9s times <math>x</math> 4s is simply <math>x \cdot 9</math> (Try to find the proof that it works for all values of <math>x</math> ~MATHWIZARD10).
 +
 +
Therefore the answer is <math>94 \cdot 9 = \boxed{\text{(A)}\ 846.}</math>
 +
 +
== Solution 2 ==
 +
 +
<cmath>\underbrace{9999\cdots 99}_{94\text{ nines}} \cdot \underbrace{4444\cdots 44}_{94\text{ fours}} = (10^{94}-1)\cdot \underbrace{4444\cdots 44}_{94\text{ fours}} = \underbrace{444\cdots 4}_{94\text{ fours}} \underbrace{000\cdots 0}_{94\text{ zeros}} - \underbrace{4444\cdots 44}_{94\text{ fours}} = \underbrace{444\cdots 4}_{93\text{ fours}} 3 \underbrace{555\cdots 5}_{93\text{ zeros}}6</cmath>
 +
 +
<cmath>4 \cdot 93 + 3 + 5 \cdot 93 + 6 = 9 \cdot 94 = \boxed{\text{(A)}\ 846}</cmath>
 +
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 +
 +
==See Also==
 +
{{AJHSME box|year=1994|num-b=24|after=Last <br /> Problem}}
 +
{{MAA Notice}}

Latest revision as of 08:30, 12 January 2024

Problem

Find the sum of the digits in the answer to

$\underbrace{9999\cdots 99}_{94\text{ nines}} \times \underbrace{4444\cdots 44}_{94\text{ fours}}$

where a string of $94$ nines is multiplied by a string of $94$ fours.

$\text{(A)}\ 846 \qquad \text{(B)}\ 855 \qquad \text{(C)}\ 945 \qquad \text{(D)}\ 954 \qquad \text{(E)}\ 1072$

Solution 1

Notice that:

$9 \cdot 4 = 36$ and $3+6 = 9 = 9 \cdot 1$

$99 \cdot 44 = 4356$ and $4+5+3+6 = 18 = 9 \cdot 2$

So the sum of the digits of $x$ 9s times $x$ 4s is simply $x \cdot 9$ (Try to find the proof that it works for all values of $x$ ~MATHWIZARD10).

Therefore the answer is $94 \cdot 9 = \boxed{\text{(A)}\ 846.}$

Solution 2

\[\underbrace{9999\cdots 99}_{94\text{ nines}} \cdot \underbrace{4444\cdots 44}_{94\text{ fours}} = (10^{94}-1)\cdot \underbrace{4444\cdots 44}_{94\text{ fours}} = \underbrace{444\cdots 4}_{94\text{ fours}} \underbrace{000\cdots 0}_{94\text{ zeros}} - \underbrace{4444\cdots 44}_{94\text{ fours}} = \underbrace{444\cdots 4}_{93\text{ fours}} 3 \underbrace{555\cdots 5}_{93\text{ zeros}}6\]

\[4 \cdot 93 + 3 + 5 \cdot 93 + 6 = 9 \cdot 94 = \boxed{\text{(A)}\ 846}\]

~isabelchen

See Also

1994 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last
Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png