Difference between revisions of "2004 IMO Problems/Problem 5"
Szhangmath (talk | contribs) (→Solution) |
Szhangmath (talk | contribs) (→Solution) |
||
Line 18: | Line 18: | ||
+ | |||
+ | [asy] | ||
+ | import graph; size(13.98cm); | ||
+ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
+ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
+ | pen dotstyle = black; /* point style */ | ||
+ | real xmin = -6.22, xmax = 7.76, ymin = -6.56, ymax = 6.3; /* image dimensions */ | ||
+ | |||
+ | /* draw figures */ | ||
+ | draw(circle((0.,0.), 4.), linewidth(2.)); | ||
+ | draw((-3.9904248302051744,0.276603822247635)--(-1.2649110640673522,-3.794733192202055), linewidth(2.)); | ||
+ | draw((-1.2649110640673522,-3.794733192202055)--(0.28102660741773866,-3.990115793548262), linewidth(2.)); | ||
+ | draw((0.28102660741773866,-3.990115793548262)--(3.9893832569337877,0.2912408441416967), linewidth(2.)); | ||
+ | draw((-3.9904248302051744,0.276603822247635)--(0.28102660741773866,-3.990115793548262), linewidth(2.)); | ||
+ | draw((-3.9904248302051744,0.276603822247635)--(3.797959075020809,-1.2551919631941093), linewidth(2.)); | ||
+ | draw((0.28102660741773866,-3.990115793548262)--(0.7148182881712134,3.935611110729308), linewidth(2.)); | ||
+ | draw((3.9893832569337877,0.2912408441416967)--(0.7148182881712134,3.935611110729308), linewidth(2.) + linetype("4 4")); | ||
+ | draw((-3.9904248302051744,0.276603822247635)--(3.9893832569337877,0.2912408441416967), linewidth(2.)); | ||
+ | draw((-1.2649110640673522,-3.794733192202055)--(0.4665755573598317,-0.5999855308790458), linewidth(2.)); | ||
+ | draw((3.9893832569337877,0.2912408441416967)--(0.4665755573598317,-0.5999855308790458), linewidth(2.)); | ||
+ | draw((0.28102660741773866,-3.990115793548262)--(3.797959075020809,-1.2551919631941093), linewidth(2.)); | ||
+ | draw((-1.2649110640673522,-3.794733192202055)--(3.9893832569337877,0.2912408441416967), linewidth(2.)); | ||
+ | draw((-3.9904248302051744,0.276603822247635)--(0.7148182881712134,3.935611110729308), linewidth(2.)); | ||
+ | draw((3.797959075020809,-1.2551919631941093)--(3.9893832569337877,0.2912408441416967), linewidth(2.) + linetype("2 2")); | ||
+ | /* dots and labels */ | ||
+ | dot((-1.2649110640673522,-3.794733192202055),dotstyle); | ||
+ | label("<math>A</math>", (-1.64,-4.2), NE * labelscalefactor); | ||
+ | dot((-3.9904248302051744,0.276603822247635),linewidth(4.pt) + dotstyle); | ||
+ | label("<math>D_{2}</math>", (-4.52,0.1), NE * labelscalefactor); | ||
+ | dot((0.7148182881712134,3.935611110729308),linewidth(4.pt) + dotstyle); | ||
+ | label("<math>E</math>", (0.8,4.1), NE * labelscalefactor); | ||
+ | dot((3.9893832569337877,0.2912408441416967),linewidth(4.pt) + dotstyle); | ||
+ | label("<math>D</math>", (4.06,0.46), NE * labelscalefactor); | ||
+ | dot((0.28102660741773866,-3.990115793548262),linewidth(4.pt) + dotstyle); | ||
+ | label("<math>B</math>", (0.2,-4.46), NE * labelscalefactor); | ||
+ | dot((3.797959075020809,-1.2551919631941093),linewidth(4.pt) + dotstyle); | ||
+ | label("<math>F</math>", (4.04,-1.42), NE * labelscalefactor); | ||
+ | dot((0.4665755573598317,-0.5999855308790458),linewidth(4.pt) + dotstyle); | ||
+ | label("<math>P</math>", (0.54,-0.44), NE * labelscalefactor); | ||
+ | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); | ||
+ | /* end of picture */ | ||
+ | [/asy] | ||
~szhangmath | ~szhangmath | ||
Revision as of 15:02, 8 February 2024
Problem
In a convex quadrilateral , the diagonal bisects neither the angle nor the angle . The point lies inside and satisfies
Prove that is a cyclic quadrilateral if and only if
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
Let be the intersection of and , let be the intersection of and ,
, so , and . , so , and .
, so is an isosceles triangle. Since , so and are isosceles triangles. So is on the angle bisector oof , since is an isosceles trapezoid, so is also on the perpendicular bisector of . So .
[asy] import graph; size(13.98cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -6.22, xmax = 7.76, ymin = -6.56, ymax = 6.3; /* image dimensions */
/* draw figures */
draw(circle((0.,0.), 4.), linewidth(2.)); draw((-3.9904248302051744,0.276603822247635)--(-1.2649110640673522,-3.794733192202055), linewidth(2.)); draw((-1.2649110640673522,-3.794733192202055)--(0.28102660741773866,-3.990115793548262), linewidth(2.)); draw((0.28102660741773866,-3.990115793548262)--(3.9893832569337877,0.2912408441416967), linewidth(2.)); draw((-3.9904248302051744,0.276603822247635)--(0.28102660741773866,-3.990115793548262), linewidth(2.)); draw((-3.9904248302051744,0.276603822247635)--(3.797959075020809,-1.2551919631941093), linewidth(2.)); draw((0.28102660741773866,-3.990115793548262)--(0.7148182881712134,3.935611110729308), linewidth(2.)); draw((3.9893832569337877,0.2912408441416967)--(0.7148182881712134,3.935611110729308), linewidth(2.) + linetype("4 4")); draw((-3.9904248302051744,0.276603822247635)--(3.9893832569337877,0.2912408441416967), linewidth(2.)); draw((-1.2649110640673522,-3.794733192202055)--(0.4665755573598317,-0.5999855308790458), linewidth(2.)); draw((3.9893832569337877,0.2912408441416967)--(0.4665755573598317,-0.5999855308790458), linewidth(2.)); draw((0.28102660741773866,-3.990115793548262)--(3.797959075020809,-1.2551919631941093), linewidth(2.)); draw((-1.2649110640673522,-3.794733192202055)--(3.9893832569337877,0.2912408441416967), linewidth(2.)); draw((-3.9904248302051744,0.276603822247635)--(0.7148182881712134,3.935611110729308), linewidth(2.)); draw((3.797959075020809,-1.2551919631941093)--(3.9893832569337877,0.2912408441416967), linewidth(2.) + linetype("2 2"));
/* dots and labels */
dot((-1.2649110640673522,-3.794733192202055),dotstyle); label("", (-1.64,-4.2), NE * labelscalefactor); dot((-3.9904248302051744,0.276603822247635),linewidth(4.pt) + dotstyle); label("", (-4.52,0.1), NE * labelscalefactor); dot((0.7148182881712134,3.935611110729308),linewidth(4.pt) + dotstyle); label("", (0.8,4.1), NE * labelscalefactor); dot((3.9893832569337877,0.2912408441416967),linewidth(4.pt) + dotstyle); label("", (4.06,0.46), NE * labelscalefactor); dot((0.28102660741773866,-3.990115793548262),linewidth(4.pt) + dotstyle); label("", (0.2,-4.46), NE * labelscalefactor); dot((3.797959075020809,-1.2551919631941093),linewidth(4.pt) + dotstyle); label("", (4.04,-1.42), NE * labelscalefactor); dot((0.4665755573598317,-0.5999855308790458),linewidth(4.pt) + dotstyle); label("", (0.54,-0.44), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */ [/asy]
~szhangmath
See Also
2004 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |