Difference between revisions of "2024 AIME II Problems/Problem 11"

Line 5: Line 5:
 
\end{equation*}
 
\end{equation*}
  
 +
==solution 1==
 +
<math>ab(a+b)+bc(b+c)+ac(a+c)=300(ab+bc+ac)-3abc=6000000, 100(ab+bc+ac)-abc=2000000</math>
 +
 +
Note <math>(100-a)(100-b)(100-c)=1000000-10000(a+b+c)+100(ab+bc+ac)-abc=0</math>. Thus, <math>a/b/c=100</math>. There are <math>201</math> cases for each but we need to subtract <math>2</math> for <math>(100,100,100)</math>. The answer is <math>\boxed{601}</math>
 +
 +
~Bluesoul
 
==See also==
 
==See also==
 
{{AIME box|year=2024|num-b=10|num-a=12|n=II}}
 
{{AIME box|year=2024|num-b=10|num-a=12|n=II}}

Revision as of 11:00, 9 February 2024

Problem

Find the number of triples of nonnegative integers (a,b,c) satisfying a+b+c=300 and a2b+a2c+b2a+b2c+c2a+c2b=6,000,000.

solution 1

$ab(a+b)+bc(b+c)+ac(a+c)=300(ab+bc+ac)-3abc=6000000, 100(ab+bc+ac)-abc=2000000$

Note $(100-a)(100-b)(100-c)=1000000-10000(a+b+c)+100(ab+bc+ac)-abc=0$. Thus, $a/b/c=100$. There are $201$ cases for each but we need to subtract $2$ for $(100,100,100)$. The answer is $\boxed{601}$

~Bluesoul

See also

2024 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

[[Category:]] The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png