Difference between revisions of "2024 AIME II Problems/Problem 11"

(solution 1)
Line 11: Line 11:
  
 
~Bluesoul
 
~Bluesoul
 +
 +
==solution 2==
 +
 +
<math>a^2(b+c)+b^2(a+c)+c^2(a+b) = 6000000</math>, thus <math>a^2(300-a)+b^2(300-b)+c^2(300-c) = 6000000</math>. Complete the cube to get <math>-(a-100)^3-(b-100)^3+(c-100)^3 = 9000000-30000(a+b+c)</math>, which so happens to be 0. Then we have <math>(a-100)^3+(b-100)^3+(c-100)^3 = 0</math>. We can use Fermat's last theorem here to note that one of a, b, c has to be 100. We have 200+200+200+1 = 601.
 +
 
==See also==
 
==See also==
 
{{AIME box|year=2024|num-b=10|num-a=12|n=II}}
 
{{AIME box|year=2024|num-b=10|num-a=12|n=II}}

Revision as of 14:32, 9 February 2024

Problem

Find the number of triples of nonnegative integers (a,b,c) satisfying a+b+c=300 and a2b+a2c+b2a+b2c+c2a+c2b=6,000,000.

solution 1

$ab(a+b)+bc(b+c)+ac(a+c)=300(ab+bc+ac)-3abc=6000000, 100(ab+bc+ac)-abc=2000000$

Note $(100-a)(100-b)(100-c)=1000000-10000(a+b+c)+100(ab+bc+ac)-abc=0$. Thus, $a/b/c=100$. There are $201$ cases for each but we need to subtract $2$ for $(100,100,100)$. The answer is $\boxed{601}$

~Bluesoul

solution 2

$a^2(b+c)+b^2(a+c)+c^2(a+b) = 6000000$, thus $a^2(300-a)+b^2(300-b)+c^2(300-c) = 6000000$. Complete the cube to get $-(a-100)^3-(b-100)^3+(c-100)^3 = 9000000-30000(a+b+c)$, which so happens to be 0. Then we have $(a-100)^3+(b-100)^3+(c-100)^3 = 0$. We can use Fermat's last theorem here to note that one of a, b, c has to be 100. We have 200+200+200+1 = 601.

See also

2024 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

[[Category:]] The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png