Difference between revisions of "2024 AIME II Problems/Problem 4"
(→Problem) |
|||
Line 3: | Line 3: | ||
Let <math>x,y</math> and <math>z</math> be positive real numbers that satisfy the following system of equations: | Let <math>x,y</math> and <math>z</math> be positive real numbers that satisfy the following system of equations: | ||
<cmath>\log_2\left({x \over yz}\right) = {1 \over 2}</cmath><cmath>\log_2\left({y \over xz}\right) = {1 \over 3}</cmath><cmath>\log_2\left({z \over xy}\right) = {1 \over 4}</cmath> | <cmath>\log_2\left({x \over yz}\right) = {1 \over 2}</cmath><cmath>\log_2\left({y \over xz}\right) = {1 \over 3}</cmath><cmath>\log_2\left({z \over xy}\right) = {1 \over 4}</cmath> | ||
− | Then the value of <math>\left|\log_2(x^4y^3z^2)\right|</math> is <math>{m | + | Then the value of <math>\left|\log_2(x^4y^3z^2)\right|</math> is <math>\tfrac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. |
==Solution 1== | ==Solution 1== |
Revision as of 13:54, 10 February 2024
Contents
[hide]Problem
Let and be positive real numbers that satisfy the following system of equations: Then the value of is where and are relatively prime positive integers. Find .
Solution 1
Denote , , and .
Then, we have:
Now, we can solve to get . Plugging these values in, we obtain . ~akliu
Solution 2
~Callisto531
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
[[Category:]] The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.