Difference between revisions of "2024 AIME II Problems/Problem 11"
(→Solution 4) |
Evanhliu2009 (talk | contribs) m (→solution 2) |
||
Line 12: | Line 12: | ||
~Bluesoul | ~Bluesoul | ||
− | == | + | ==Solution 2== |
<math>a^2(b+c)+b^2(a+c)+c^2(a+b) = 6000000</math>, thus <math>a^2(300-a)+b^2(300-b)+c^2(300-c) = 6000000</math>. Complete the cube to get <math>-(a-100)^3-(b-100)^3+(c-100)^3 = 9000000-30000(a+b+c)</math>, which so happens to be 0. Then we have <math>(a-100)^3+(b-100)^3+(c-100)^3 = 0</math>. We can use Fermat's last theorem here to note that one of a, b, c has to be 100. We have 200+200+200+1 = 601. | <math>a^2(b+c)+b^2(a+c)+c^2(a+b) = 6000000</math>, thus <math>a^2(300-a)+b^2(300-b)+c^2(300-c) = 6000000</math>. Complete the cube to get <math>-(a-100)^3-(b-100)^3+(c-100)^3 = 9000000-30000(a+b+c)</math>, which so happens to be 0. Then we have <math>(a-100)^3+(b-100)^3+(c-100)^3 = 0</math>. We can use Fermat's last theorem here to note that one of a, b, c has to be 100. We have 200+200+200+1 = 601. |
Revision as of 14:55, 10 February 2024
Contents
[hide]Problem
Find the number of triples of nonnegative integers
solution 1
Note . Thus, . There are cases for each but we need to subtract for . The answer is
~Bluesoul
Solution 2
, thus . Complete the cube to get , which so happens to be 0. Then we have . We can use Fermat's last theorem here to note that one of a, b, c has to be 100. We have 200+200+200+1 = 601.
Solution 3
We have
Therefore, \[ \left( a - 100 \right) \left( b - 100 \right) \left( c - 100 \right) = 0 . \]
Case 1: Exactly one out of , , is equal to 0.
Step 1: We choose which term is equal to 0. The number ways is 3.
Step 2: For the other two terms that are not 0, we count the number of feasible solutions.
W.L.O.G, we assume we choose in Step 1. In this step, we determine and .
Recall . Thus, . Because and are nonnegative integers and and , the number of solutions is 200.
Following from the rule of product, the number of solutions in this case is .
Case 2: At least two out of , , are equal to 0.
Because , we must have .
Therefore, the number of solutions in this case is 1.
Putting all cases together, the total number of solutions is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 4
We will use Vieta's formulas to solve this problem. We assume , , and . Thus , , are the three roots of a cubic polynomial .
We note that , which simplifies to .
Our polynomial is therefore equal to . Note that , and by polynomial division we obtain .
We now notice that the solutions to the quadratic equation above are , and that by changing the value of we can let the roots of the equation be any pair of two integers which sum to . Thus any triple in the form where is an integer between and satisfies the conditions.
Now to count the possible solutions, we note that when , the three roots are distinct; thus there are ways to order the three roots. As we can choose from to , there are triples in this case. When , all three roots are equal to , and there is only one triple in this case.
In total, there are thus distinct triples.
~GaloisTorrent <3
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.