Difference between revisions of "2024 AIME II Problems/Problem 10"

(Solution 2)
Line 12: Line 12:
 
Denote <math>AB=a, AC=b, BC=c</math>. By the given condition, <math>\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6</math>, where <math>A</math> is the area of <math>\triangle{ABC}</math>.
 
Denote <math>AB=a, AC=b, BC=c</math>. By the given condition, <math>\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6</math>, where <math>A</math> is the area of <math>\triangle{ABC}</math>.
  
Moreover, since <math>OI\bot AI</math>, the second intersection of the line <math>AI</math> and <math>(ABC)</math> is the reflection of <math>A</math> about <math>I</math>, denote that as <math>D</math>. By Fact 5, <math>DI=BD=CD=\frac{AD}{2}\implies BD(a+b)=2BD\cdot c\implies a+b=2c</math>.
+
Moreover, since <math>OI\bot AI</math>, the second intersection of the line <math>AI</math> and <math>(ABC)</math> is the reflection of <math>A</math> about <math>I</math>, denote that as <math>D</math>. By the incenter-excenter lemma, <math>DI=BD=CD=\frac{AD}{2}\implies BD(a+b)=2BD\cdot c\implies a+b=2c</math>.
  
 
Thus, we have <math>\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c</math>. Now, we have <math>\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}</math>
 
Thus, we have <math>\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c</math>. Now, we have <math>\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}</math>

Revision as of 19:34, 10 February 2024

Problem

Let $\triangle ABC$ have circumcenter $O$ and incenter $I$ with $\overline{IA}\perp\overline{OI}$, circumradius $13$, and inradius $6$. Find $AB\cdot AC$.

Solution

By Euler's formula $OI^{2}=R(R-2r)$, we have $OI^{2}=13(13-12)=13$. Thus, by the Pythagorean theorem, $AI^{2}=13^{2}-13=156$. Let $AI\cap(ABC)=M$; notice $\triangle AOM$ is isosceles and $\overline{OI}\perp\overline{AM}$ which is enough to imply that $I$ is the midpoint of $\overline{AM}$, and $M$ itself is the midpoint of $II_{a}$ where $I_{a}$ is the $A$-excenter of $\triangle ABC$. Therefore, $AI=IM=MI_{a}=\sqrt{156}$ and \[AB\cdot AC=AI\cdot AI_{a}=3\cdot AI^{2}=\boxed{468}.\]

Note that this problem is extremely similar to 2019 CIME I/14.


Solution 2

Denote $AB=a, AC=b, BC=c$. By the given condition, $\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6$, where $A$ is the area of $\triangle{ABC}$.

Moreover, since $OI\bot AI$, the second intersection of the line $AI$ and $(ABC)$ is the reflection of $A$ about $I$, denote that as $D$. By the incenter-excenter lemma, $DI=BD=CD=\frac{AD}{2}\implies BD(a+b)=2BD\cdot c\implies a+b=2c$.

Thus, we have $\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c$. Now, we have $\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}$

~Bluesoul

Solution 3

Denote by $R$ and $r$ the circumradius and inradius, respectively.

First, we have \[ r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1) \]

Second, because $AI \perp IO$, AI=AOcosIAO=AOcos(90CA2)=AOsin(C+A2)=Rsin(C+180BC2)=RcosBC2.

Thus, r=AIsinA2=RsinA2cosBC2(2)

Taking $(1) - (2)$, we get \[ 4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} . \]

We have 2sinB2sinC2=cosB+C2+cosBC2.

Plugging this into the above equation, we get \[ \cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3) \]

Now, we analyze Equation (2). We have rR=sinA2cosBC2=sin180BC2cosBC2=cosB+C2cosBC2(4)

Solving Equations (3) and (4), we get \[ \cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm} \cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5) \]

Now, we compute $AB \cdot AC$. We have ABAC=2RsinC2RsinB=2R2(cos(B+C)+cos(BC))=2R2((2(cosB+C2)21)+(2(cosBC2)21))=6Rr=(468)  where the first equality follows from the law of sines, the fourth equality follows from (5).


~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution

https://youtu.be/_zxBvojcAQ4

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


See also

2024 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png