Difference between revisions of "2024 AIME II Problems/Problem 10"
(→Problem) |
(→Problem) |
||
Line 6: | Line 6: | ||
import olympiad; | import olympiad; | ||
real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; | real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; | ||
− | pair A=(0,0),B=(c,0) | + | pair A=(0,0),B=(c,0) |
pair C = (c/3,8.7*c/10); | pair C = (c/3,8.7*c/10); | ||
draw(circumcircle(A,B,C)); | draw(circumcircle(A,B,C)); | ||
Line 12: | Line 12: | ||
pair O=circumcenter(A,B,C); | pair O=circumcenter(A,B,C); | ||
pair L=extension(C,I,A,B); | pair L=extension(C,I,A,B); | ||
− | dot(I^^O^^A^^B^^C^^D^^L | + | dot(I^^O^^A^^B^^C^^D^^L); |
draw(C--L); | draw(C--L); | ||
path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} | path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} | ||
Line 20: | Line 20: | ||
draw(incircle(A,B,C)); | draw(incircle(A,B,C)); | ||
label("$A$",A,SW); | label("$A$",A,SW); | ||
− | |||
label("$B$",B,SE); | label("$B$",B,SE); | ||
label("$C$",C,N); | label("$C$",C,N); |
Revision as of 14:09, 12 February 2024
Problem
Let have circumcenter and incenter with , circumradius , and inradius . Find .
size(300); import olympiad; real c=8.1,a=5*(c+sqrt(c^2-64))/6,b=5*(c-sqrt(c^2-64))/6; pair A=(0,0),B=(c,0) pair C = (c/3,8.7*c/10); draw(circumcircle(A,B,C)); pair I=incenter(A,B,C); pair O=circumcenter(A,B,C); pair L=extension(C,I,A,B); dot(I^^O^^A^^B^^C^^D^^L); draw(C--L); path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} draw(A--B--D--cycle); draw(A--C--B); draw(A--I--B^^C--I); draw(incircle(A,B,C)); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,S); label("$I$",I,NE); label("$L$",L,SW); label("$O$",O,E); label("$\alpha$",A,5*dir(midangle(C,A,I)),fontsize(8)); label("$\alpha$",A,5*dir(midangle(I,A,B)),fontsize(8)); label("$\beta$",B,12*dir(midangle(A,B,I)),fontsize(8)); label("$\beta$",B,12*dir(midangle(I,B,C)),fontsize(8)); label("$\gamma$",C,5*dir(midangle(A,C,I)),fontsize(8)); label("$\gamma$",C,5*dir(midangle(I,C,B)),fontsize(8)); (Error making remote request. Unknown error_msg)
Solution in Progress ~KingRavi
Solution
By Euler's formula , we have . Thus, by the Pythagorean theorem, . Let ; notice is isosceles and which is enough to imply that is the midpoint of , and itself is the midpoint of where is the -excenter of . Therefore, and
Note that this problem is extremely similar to 2019 CIME I/14.
Solution 2
Denote . By the given condition, , where is the area of .
Moreover, since , the second intersection of the line and is the reflection of about , denote that as . By the incenter-excenter lemma, .
Thus, we have . Now, we have
~Bluesoul
Solution 3
Denote by and the circumradius and inradius, respectively.
First, we have \[ r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1) \]
Second, because ,
Thus,
Taking , we get \[ 4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} . \]
We have
Plugging this into the above equation, we get \[ \cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3) \]
Now, we analyze Equation (2). We have
Solving Equations (3) and (4), we get \[ \cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm} \cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5) \]
Now, we compute . We have
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.