Difference between revisions of "2024 AIME II Problems/Problem 10"
(→Solution 1 (Continued)) |
(→Solution 1 (Continued)) |
||
Line 90: | Line 90: | ||
pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26), E = (c/2-0.01,0); | pair B=(0,0),C=(c,0), D = (c/2-0.01, -2.26), E = (c/2-0.01,0); | ||
pair A = (c/3,8.65*c/10); | pair A = (c/3,8.65*c/10); | ||
+ | pair F = (2*c/3, 4); | ||
draw(circumcircle(A,B,C)); | draw(circumcircle(A,B,C)); | ||
pair I=incenter(A,B,C); | pair I=incenter(A,B,C); | ||
pair O=circumcenter(A,B,C); | pair O=circumcenter(A,B,C); | ||
pair L=extension(A,I,C,B); | pair L=extension(A,I,C,B); | ||
− | dot(I^^O^^A^^B^^C^^D^^L^^E); | + | dot(I^^O^^A^^B^^C^^D^^L^^E^^F); |
draw(A--L); | draw(A--L); | ||
draw(A--D); | draw(A--D); | ||
Line 112: | Line 113: | ||
label("$O$",O,E); | label("$O$",O,E); | ||
label("$E$",E,N); | label("$E$",E,N); | ||
+ | label("$F$",F,NE); | ||
label("$\alpha$",B,5*dir(midangle(A,B,I)),fontsize(8)); | label("$\alpha$",B,5*dir(midangle(A,B,I)),fontsize(8)); | ||
label("$\alpha$",B,5*dir(midangle(I,B,C)),fontsize(8)); | label("$\alpha$",B,5*dir(midangle(I,B,C)),fontsize(8)); |
Revision as of 12:20, 13 February 2024
Contents
[hide]Problem
Let have circumcenter and incenter with , circumradius , and inradius . Find .
Solution 1 (Similar Triangles and PoP)
Start off by (of course) drawing a diagram! Let and be the incenter and circumcenters of triangle , respectively. Furthermore, extend to meet at and the circumcircle of triangle at .
We'll tackle the initial steps of the problem in two different manners, both leading us to the same final calculations.
Solution 1.1
Since is the incenter, . Furthermore, and are both subtended by the same arc , so Therefore by AA similarity, . From this we can say that
Since is a chord of the circle and is a perpendicular from the center to that chord, must bisect . This can be seen by drawing and recognizing that this creates two congruent right triangles. Therefore,
We have successfully represented in terms of and . Solution 1.2 will explain an alternate method to get a similar relationship, and then we'll rejoin and finish off the solution.
Solution 1.2
by vertical angles and because both are subtended by arc . Thus .
Thus
Symmetrically, we get , so
Substituting, we get
Lemma 1: BD = CD = ID
Proof:
We commence angle chasing: we know . Therefore . Looking at triangle , we see that , and . Therefore because the sum of the angles must be , . Now is a straight line, so . Since , triangle is isosceles and thus .
A similar argument should suffice to show by symmetry, so thus .
Now we regroup and get
Now note that and are part of the same chord in the circle, so we can use Power of a point to express their product differently.
Solution 1 (Continued)
Now we have some sort of expression for in terms of and . Let's try to find first.
Drop an altitude from to and to :
Solution in Progress ~KingRavi
Solution
By Euler's formula , we have . Thus, by the Pythagorean theorem, . Let ; notice is isosceles and which is enough to imply that is the midpoint of , and itself is the midpoint of where is the -excenter of . Therefore, and
Note that this problem is extremely similar to 2019 CIME I/14.
Solution 2
Denote . By the given condition, , where is the area of .
Moreover, since , the second intersection of the line and is the reflection of about , denote that as . By the incenter-excenter lemma, .
Thus, we have . Now, we have
~Bluesoul
Solution 3
Denote by and the circumradius and inradius, respectively.
First, we have \[ r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1) \]
Second, because ,
Thus,
Taking , we get \[ 4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} . \]
We have
Plugging this into the above equation, we get \[ \cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3) \]
Now, we analyze Equation (2). We have
Solving Equations (3) and (4), we get \[ \cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm} \cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5) \]
Now, we compute . We have
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.