Difference between revisions of "2015 AMC 8 Problems/Problem 12"

m (Problem)
(36 intermediate revisions by 19 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
How many pairs of parallel edges, such as <math>\overline{AB}</math> and <math>\overline{GH}</math> or <math>\overline{EH}</math> and <math>\overline{FG}</math>, does a cube have?
 
How many pairs of parallel edges, such as <math>\overline{AB}</math> and <math>\overline{GH}</math> or <math>\overline{EH}</math> and <math>\overline{FG}</math>, does a cube have?
  
 
<math>\textbf{(A) }6 \quad\textbf{(B) }12 \quad\textbf{(C) } 18 \quad\textbf{(D) } 24 \quad \textbf{(E) } 36</math>
 
 
<asy> import three;
 
<asy> import three;
 
currentprojection=orthographic(1/2,-1,1/2); /* three - currentprojection, orthographic */
 
currentprojection=orthographic(1/2,-1,1/2); /* three - currentprojection, orthographic */
Line 18: Line 18:
 
label("$F$",(1,1,1),N);
 
label("$F$",(1,1,1),N);
 
</asy>
 
</asy>
The area of <math>\triangle ABC</math> is equal to half the product of its base and heightBy the Pythagorean Theorem, we find its height is <math>\sqrt{1^2+2^2}=\sqrt{5}</math>, and its base is <math>\sqrt{2^2+4^2}=\sqrt{20}</math>.  We multiply these and divide by 2 to find the of the triangle is <math>\frac{\sqrt{5 \cdot 20}}2=\frac{\sqrt{100}}2=\frac{10}2=5</math>. Since the grid has an area of <math>30</math>, the fraction of the grid covered by the triangle is <math>\frac 5{30}=\boxed{\textbf{(A) }\frac{1}{6}}</math>.
+
 
 +
<math>\textbf{(A) }6\qquad\textbf{(B) }12\qquad\textbf{(C) }18\qquad\textbf{(D) }24\qquad \textbf{(E) }36</math>
 +
 
 +
==Solutions==
 +
 
 +
===Solution 1===
 +
We first count the number of pairs of parallel lines that are in the same direction as <math>\overline{AB}</math>The pairs of parallel lines are <math>\overline{AB}\text{ and }\overline{EF}</math>, <math>\overline{CD}\text{ and }\overline{GH}</math>, <math>\overline{AB}\text{ and }\overline{CD}</math>, <math>\overline{EF}\text{ and }\overline{GH}</math>, <math>\overline{AB}\text{ and }\overline{GH}</math>, and <math>\overline{CD}\text{ and }\overline{EF}</math>.  These are <math>6</math> pairs total.  We can do the same for the lines in the same direction as <math>\overline{AE}</math> and <math>\overline{AD}</math>.  This means there are <math>6\cdot 3=\boxed{\textbf{(C) } 18}</math> total pairs of parallel lines.
 +
 
 +
===Solution 2===
 +
Look at any edge, let's say <math>\overline{AB}</math>. There are three ways we can pair <math>\overline{AB}</math> with another edge. <math>\overline{AB}\text{ and }\overline{EF}</math>, <math>\overline{AB}\text{ and }\overline{HG}</math>, and <math>\overline{AB}\text{ and }\overline{DC}</math>. There are 12 edges on a cube. 3 times 12 is 36. We have to divide by 2 because every pair is counted twice, so <math>\frac{36}{2}</math> is <math>\boxed{\textbf{(C) } 18}</math> total pairs of parallel lines.
 +
 
 +
===Solution 3===
 +
We can use the feature of 3-Dimension in a cube to solve the problem systematically. For example, in the 3-D of the cube, <math>\overline{AB}</math>, <math>\overline{BC}</math>, and <math>\overline{BF}</math> have <math>4</math> different parallel edges respectively. So it gives us the total pairs of parallel lines are <math>\binom{4}{2}\cdot3 =\boxed{\textbf{(C) } 18}</math>.
 +
 
 +
--LarryFlora
 +
 
 +
==Video Solution (HOW TO THINK CREATIVELY!!!)==
 +
https://youtu.be/iJC0Wqd1ZcU
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==Video Solution 2==
 +
https://youtu.be/7bgsUa62d4g
 +
 
 +
~savannahsolver
  
 
==See Also==
 
==See Also==

Revision as of 01:32, 2 March 2024

Problem

How many pairs of parallel edges, such as $\overline{AB}$ and $\overline{GH}$ or $\overline{EH}$ and $\overline{FG}$, does a cube have?

[asy] import three; currentprojection=orthographic(1/2,-1,1/2); /* three - currentprojection, orthographic */ draw((0,0,0)--(1,0,0)--(1,1,0)--(0,1,0)--cycle); draw((0,0,0)--(0,0,1)); draw((0,1,0)--(0,1,1)); draw((1,1,0)--(1,1,1)); draw((1,0,0)--(1,0,1));  draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle); label("$D$",(0,0,0),S); label("$A$",(0,0,1),N); label("$H$",(0,1,0),S); label("$E$",(0,1,1),N); label("$C$",(1,0,0),S); label("$B$",(1,0,1),N); label("$G$",(1,1,0),S); label("$F$",(1,1,1),N); [/asy]

$\textbf{(A) }6\qquad\textbf{(B) }12\qquad\textbf{(C) }18\qquad\textbf{(D) }24\qquad \textbf{(E) }36$

Solutions

Solution 1

We first count the number of pairs of parallel lines that are in the same direction as $\overline{AB}$. The pairs of parallel lines are $\overline{AB}\text{ and }\overline{EF}$, $\overline{CD}\text{ and }\overline{GH}$, $\overline{AB}\text{ and }\overline{CD}$, $\overline{EF}\text{ and }\overline{GH}$, $\overline{AB}\text{ and }\overline{GH}$, and $\overline{CD}\text{ and }\overline{EF}$. These are $6$ pairs total. We can do the same for the lines in the same direction as $\overline{AE}$ and $\overline{AD}$. This means there are $6\cdot 3=\boxed{\textbf{(C) } 18}$ total pairs of parallel lines.

Solution 2

Look at any edge, let's say $\overline{AB}$. There are three ways we can pair $\overline{AB}$ with another edge. $\overline{AB}\text{ and }\overline{EF}$, $\overline{AB}\text{ and }\overline{HG}$, and $\overline{AB}\text{ and }\overline{DC}$. There are 12 edges on a cube. 3 times 12 is 36. We have to divide by 2 because every pair is counted twice, so $\frac{36}{2}$ is $\boxed{\textbf{(C) } 18}$ total pairs of parallel lines.

Solution 3

We can use the feature of 3-Dimension in a cube to solve the problem systematically. For example, in the 3-D of the cube, $\overline{AB}$, $\overline{BC}$, and $\overline{BF}$ have $4$ different parallel edges respectively. So it gives us the total pairs of parallel lines are $\binom{4}{2}\cdot3 =\boxed{\textbf{(C) } 18}$.

--LarryFlora

Video Solution (HOW TO THINK CREATIVELY!!!)

https://youtu.be/iJC0Wqd1ZcU

~Education, the Study of Everything

Video Solution 2

https://youtu.be/7bgsUa62d4g

~savannahsolver

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png