Difference between revisions of "2005 Alabama ARML TST Problems/Problem 12"

(New page: ==Problem== Find the number of ordered pairs of positive integers <math>(a,b,c,d)</math> that satisfy the following equation:<center><math>a+b+c+d=12</math>.</center> ==Solution== The [[G...)
 
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
The [[Generating Function]] for a is <math>1+x+x^2+x^3+\cdots</math>. The same for b, c, and d.
+
The [[generating function]] for a is <math>1+x+x^2+x^3+\cdots</math>. The same for b, c, and d.
  
 
<math>(1+x+x^2+x^3+\cdots)^4=1+4x+10x^2+\cdots</math>
 
<math>(1+x+x^2+x^3+\cdots)^4=1+4x+10x^2+\cdots</math>

Revision as of 20:16, 5 January 2008

Problem

Find the number of ordered pairs of positive integers $(a,b,c,d)$ that satisfy the following equation:

$a+b+c+d=12$.

Solution

The generating function for a is $1+x+x^2+x^3+\cdots$. The same for b, c, and d.

$(1+x+x^2+x^3+\cdots)^4=1+4x+10x^2+\cdots$

Since the existance of the Binomial Theorem, we can assume that these are the results of choosing.

$\binom{n}{n}=1$

$\binom{n+1}{n}=4 \Rightarrow n=3$

Checking $\binom{5}{3}$, it works.

We want the coefficient of x^12, so we have $\binom{3+12}{3}=455$.

See Also