Difference between revisions of "Asymptote: Drawing"

m (Dots)
m (add code)
(14 intermediate revisions by 6 users not shown)
Line 9: Line 9:
 
<tt>
 
<tt>
 
dot((0,0));
 
dot((0,0));
 +
</tt>
 +
 +
You can fix certain attributes to this dot, such as color:
 +
 +
<tt>
 +
dot((0,0),blue);
 
</tt>
 
</tt>
  
 
<asy>
 
<asy>
dot((0,0));
+
dot((0,0),blue);
 
</asy>
 
</asy>
  
You can fix certain attributes to this dot, such as color:
+
To make the dot an open dot, you could draw a really small circle with a white fill and black outline:
  
 
<tt>
 
<tt>
dot((0,0),blue);
+
filldraw(circle((0, 0), 0.02), white, black);
 
</tt>
 
</tt>
 +
 +
For example:
  
 
<asy>
 
<asy>
dot((0,0),green);
+
draw((0, 0) -- (0, 1), EndArrow(10));
 +
label("$(0, 1)$", (0, 1), NW);
 +
draw((0, 0) -- (1, 0), EndArrow(10));
 +
label("$(1, 0)$", (1, 0), SE);
 +
draw((0, 0) --(1, 1), blue);
 +
label("$x = y$", (0, 0) -- (1, 1), SE, blue);
 +
filldraw(circle((0, 0), 0.02), white, black);
 
</asy>
 
</asy>
 +
 +
~[[User:Enderramsby|enderramsby]]
  
 
==Circles==
 
==Circles==
Line 60: Line 76:
 
<tt>draw(ellipse((0,0),5,3));</tt>
 
<tt>draw(ellipse((0,0),5,3));</tt>
  
In this case, the (0,0) is the center of the ellipse, the 5 is the length of the major axis and the 3 is the length of the minor axis. This results in:
+
In this case, the (0,0) is the center of the ellipse, the 5 is the length of the semi-major axis and the 3 is the length of the semi-minor axis. This results in:
  
 
<asy>
 
<asy>
Line 67: Line 83:
  
 
Once again, we can fix attributes and fill the inside.
 
Once again, we can fix attributes and fill the inside.
 +
 +
<tt>filldraw(ellipse((0,0),5,3),green,red+linewidth(1));</tt>
  
 
<asy>
 
<asy>
 
filldraw(ellipse((0,0),5,3),green,red+linewidth(1));
 
filldraw(ellipse((0,0),5,3),green,red+linewidth(1));
 +
</asy>
 +
 +
==Unit- Paths==
 +
 +
There are several useful pre defined paths for drawing things like unit squares, unit circles, etc. Just use the unit- paths!
 +
 +
You can use the
 +
 +
<tt>unitsquare</tt>
 +
<tt>unitcircle</tt>
 +
 +
paths for 2D. A list of Unit- paths for 3D can be found in the "Definitions": section of [[Asymptote: 3D graphics]]
 +
 +
Here is the <tt>unitsquare</tt> command:
 +
 +
<tt>draw(unitsquare);</tt> yields
 +
<asy>
 +
draw(unitsquare);
 +
</asy>
 +
 +
And the <tt>unitsphere</tt> command.(Note: you have to import the three module for this to work.)
 +
 +
<tt>import three;
 +
draw(unitsphere,pink);</tt>
 +
yields
 +
<asy>import three;
 +
draw(unitsphere,pink);</asy>
 +
 +
Since the unit- variables are paths, you can assign pen, fill them, and define other paths as them:
 +
 +
 +
<tt>path u=unitcircle;</tt>
 +
<tt>pen p=red+dashed;</tt>
 +
<tt>draw(u,p);</tt>
 +
 +
yields
 +
 +
<asy>
 +
path u=unitcircle;
 +
pen p=red+dashed;
 +
draw(u,p);
 
</asy>
 
</asy>

Revision as of 13:13, 5 July 2024

Asymptote (Vector Graphics Language)
Getting Started - Basics - Drawing - Labeling - Filling - Useful functions - Examples - Macros and Packages

Help - Reference - Advanced Asymptote - 3D Graphics - CSE5 Package - How to

Dots

Let us start off with the most basic of this basic command: drawing a dot.

To draw a dot, simply write the following code:

dot((0,0));

You can fix certain attributes to this dot, such as color:

dot((0,0),blue);

[asy] dot((0,0),blue); [/asy]

To make the dot an open dot, you could draw a really small circle with a white fill and black outline:

filldraw(circle((0, 0), 0.02), white, black);

For example:

[asy] draw((0, 0) -- (0, 1), EndArrow(10)); label("$(0, 1)$", (0, 1), NW); draw((0, 0) -- (1, 0), EndArrow(10)); label("$(1, 0)$", (1, 0), SE); draw((0, 0) --(1, 1), blue); label("$x = y$", (0, 0) -- (1, 1), SE, blue); filldraw(circle((0, 0), 0.02), white, black); [/asy]

~enderramsby

Circles

In this article, draw(circle((0,0),5));

We see that the first draw() command creates the circle, which uses the circle() command. How this works is that the circle() command produces a path in which the draw() command draws. Within the circle command, we see the center point is located at the cartesian plane point (0,0), and it has a radius of 5.

This code produces:

[asy] draw(circle((0,0),5)); [/asy]

Once again, we can fix certain attributes to this code:

draw(circle((0,0),5),red+linewidth(1));

[asy] draw(circle((0,0),5),red+linewidth(1)); [/asy]

And we can fill the inside:

filldraw(circle((0,0),5),green,red+linewidth(1));

[asy] filldraw(circle((0,0),5),green,red+linewidth(1)); [/asy]

Ellipse

Another rounded figure we can create is the ellipse.

draw(ellipse((0,0),5,3));

In this case, the (0,0) is the center of the ellipse, the 5 is the length of the semi-major axis and the 3 is the length of the semi-minor axis. This results in:

[asy] draw(ellipse((0,0),5,3)); [/asy]

Once again, we can fix attributes and fill the inside.

filldraw(ellipse((0,0),5,3),green,red+linewidth(1));

[asy] filldraw(ellipse((0,0),5,3),green,red+linewidth(1)); [/asy]

Unit- Paths

There are several useful pre defined paths for drawing things like unit squares, unit circles, etc. Just use the unit- paths!

You can use the

unitsquare 
unitcircle 

paths for 2D. A list of Unit- paths for 3D can be found in the "Definitions": section of Asymptote: 3D graphics

Here is the unitsquare command:

draw(unitsquare); yields [asy] draw(unitsquare); [/asy]

And the unitsphere command.(Note: you have to import the three module for this to work.)

import three; draw(unitsphere,pink); yields [asy]import three; draw(unitsphere,pink);[/asy]

Since the unit- variables are paths, you can assign pen, fill them, and define other paths as them:


path u=unitcircle;
pen p=red+dashed;
draw(u,p);

yields

[asy] path u=unitcircle; pen p=red+dashed; draw(u,p); [/asy]