Difference between revisions of "2002 AMC 10P Problems/Problem 1"

(Solution 1)
(Solution 1)
Line 18: Line 18:
  
 
\begin{align*}
 
\begin{align*}
\frac{(2^4)^8}{(4^8)^2}<math>\
+
\frac{(2^4)^8}{(4^8)^2} \
=\frac{(2^4)^8}{(2^16)^2}</math>\
+
=\frac{(2^4)^8}{(2^16)^2} \
=\frac{2^32}{2^32}<math>\
+
=\frac{2^32}{2^32} \
=1
+
=1 \
 
\end{align*}
 
\end{align*}
  
Thus, our answer is </math>\boxed{\textbf{(C) } 1}.$
+
Thus, our answer is <math>\boxed{\textbf{(C) } 1}.</math>
  
 
== See also ==
 
== See also ==
 
{{AMC10 box|year=2002|ab=P|before=First question|num-a=2}}
 
{{AMC10 box|year=2002|ab=P|before=First question|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:15, 14 July 2024

Problem

The ratio $\frac{(2^4)^8}{(4^8)^2}$ equals

$\text{(A) }\frac{1}{4} \qquad \text{(B) }\frac{1}{2} \qquad \text{(C) }1 \qquad \text{(D) }2 \qquad \text{(E) }8$

Solution 1

We can use basic rules of exponentiation to solve this problem.

(24)8(48)2=(24)8(216)2=232232=1

Thus, our answer is $\boxed{\textbf{(C) } 1}.$

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png