Difference between revisions of "2002 AMC 10P Problems/Problem 5"

(Solution 1)
(Solution 2)
Line 26: Line 26:
 
  n & 1 & 2 & 3 & 4 & 5 \  
 
  n & 1 & 2 & 3 & 4 & 5 \  
 
  \hline
 
  \hline
  an & 1 & \frac{4}{3} & \frac{5/3} & 2 & \frac{7/3} \
+
  an & 1 & 4/3 & 5/3 & 2 & 7/3 \
 
  \hline
 
  \hline
 
\end{tabular}
 
\end{tabular}

Revision as of 19:55, 14 July 2024

Problem

Let $(a_n)_{n \geq 1}$ be a sequence such that $a_1 = 1$ and $3a_{n+1} - 3a_n = 1$ for all $n \geq 1.$ Find $a_{2002}.$

$\text{(A) }666 \qquad \text{(B) }667 \qquad \text{(C) }668 \qquad \text{(D) }669 \qquad \text{(E) }670$

Solution 1

The recursive rule is equal to $a_{n+1}=\frac{1}{3}+a_{n}$ for all $n \geq 1.$ By recursion, $a_{n+2}=\frac{1}{3}+a_{n+1}=a_{n+2}=\frac{1}{3}+\frac{1}{3}+a_n.$ If we set $n=1$ and repeat this process $2001$ times, we will get $a_{2001+1}=a_{2002}=\frac{1}{3}(2001) + a_1=667+1=668.$

Thus, our answer is $\boxed{\textbf{(C) } 668}.$

Solution 2

Find the first few terms of the sequence and find a pattern. \[\begin{tabular}{|c|c|c|c|c|c|}  \hline   n & 1 & 2 & 3 & 4 & 5 \\   \hline  an & 1 & 4/3 & 5/3 & 2 & 7/3 \\  \hline \end{tabular}\]

From here, we can deduce that $a_n=\frac{2}{3}+\frac{1}{3}n.$ Plugging in $n=2002,$ $a_2002=\frac{2}{3}+\frac{2002}{3}=668.$

Thus, our answer is $\boxed{\textbf{(C) } 668}.$

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png