Difference between revisions of "2002 AMC 10P Problems/Problem 23"

(Solution 1)
(Solution 1)
Line 25: Line 25:
 
Start by subtracting <math>a</math> and <math>b</math> and group those with a common denominator together, leaving <math>\frac{1^2}{1}</math> and <math>\frac{1001^2}{2003}</math> to the side.
 
Start by subtracting <math>a</math> and <math>b</math> and group those with a common denominator together, leaving <math>\frac{1^2}{1}</math> and <math>\frac{1001^2}{2003}</math> to the side.
  
<math>a-b=\frac{1^2}{1} + \frac{2^2}{3} + \frac{3^2}{5} +  \; \dots \; + \frac{1001^2}{2001}  
+
\begin{align*}
- \frac{1^2}{3} + \frac{2^2}{5} + \frac{3^2}{7} +  \; \dots \; + \frac{1001^2}{2003}
+
<math>a-b
=\frac{(2^2-1^2)}{3}+\frac{(3^2-2^2)}{5}+\frac{4^2-3^2}{7} + \; \dots \; + \frac{1001^2-1000^2}{2001} + 1 - \frac{1001^2}{2003}.</math>
+
&=\frac{1^2}{1} + \frac{2^2}{3} + \frac{3^2}{5} +  \; \dots \; + \frac{1001^2}{2001} - \frac{1^2}{3} + \frac{2^2}{5} + \frac{3^2}{7} +  \; \dots \; + \frac{1001^2}{2003} \
 +
&=\frac{(2^2-1^2)}{3}+\frac{(3^2-2^2)}{5}+\frac{4^2-3^2}{7} + \; \dots \; + \frac{1001^2-1000^2}{2001} + 1 - \frac{1001^2} \{2003}.</math>
 +
\end{align*}
  
 
== See also ==
 
== See also ==
 
{{AMC10 box|year=2002|ab=P|num-b=22|num-a=24}}
 
{{AMC10 box|year=2002|ab=P|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 05:54, 15 July 2024

Problem

Let \[a=\frac{1^2}{1} + \frac{2^2}{3} + \frac{3^2}{5} +  \; \dots \; + \frac{1001^2}{2001}\]

and

\[b=\frac{1^2}{3} + \frac{2^2}{5} + \frac{3^2}{7} +  \; \dots \; + \frac{1001^2}{2003}.\]

Find the integer closest to $a-b.$

$\text{(A) }500 \qquad \text{(B) }501 \qquad \text{(C) }999 \qquad \text{(D) }1000 \qquad \text{(E) }1001$

Solution 1

Start by subtracting $a$ and $b$ and group those with a common denominator together, leaving $\frac{1^2}{1}$ and $\frac{1001^2}{2003}$ to the side.

\begin{align*} $a-b &=\frac{1^2}{1} + \frac{2^2}{3} + \frac{3^2}{5} + \; \dots \; + \frac{1001^2}{2001} - \frac{1^2}{3} + \frac{2^2}{5} + \frac{3^2}{7} + \; \dots \; + \frac{1001^2}{2003} \ &=\frac{(2^2-1^2)}{3}+\frac{(3^2-2^2)}{5}+\frac{4^2-3^2}{7} + \; \dots \; + \frac{1001^2-1000^2}{2001} + 1 - \frac{1001^2} \{2003}.$ (Error compiling LaTeX. Unknown error_msg) \end{align*}

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png