Difference between revisions of "2002 AMC 10P Problems/Problem 23"
(→Solution 1) |
(→Solution 1) |
||
Line 27: | Line 27: | ||
\begin{align*} | \begin{align*} | ||
a-b | a-b | ||
− | &=\frac{1^2}{1} + \frac{2^2}{3} + \frac{3^2}{5} + \; \dots \; + \frac{1001^2}{2001} - \frac{1^2}{3} + \frac{2^2}{5} + \frac{3^2}{7} + \; \dots \; + \frac{1001^2}{2003} \ | + | &=(\frac{1^2}{1} + \frac{2^2}{3} + \frac{3^2}{5} + \; \dots \; + \frac{1001^2}{2001}) - (\frac{1^2}{3} + \frac{2^2}{5} + \frac{3^2}{7} + \; \dots \; + \frac{1001^2}{2003}) \ |
− | &=\frac{(2^2-1^2)}{3}+\frac{(3^2-2^2)}{5}+\frac{4^2-3^2}{7} + \; \dots \; + \frac{1001^2-1000^2}{2001} + 1 - \frac{1001^2} | + | &=\frac{(2^2-1^2)}{3}+\frac{(3^2-2^2)}{5}+\frac{4^2-3^2}{7} + \; \dots \; + \frac{1001^2-1000^2}{2001} + 1 - \frac{1001^2}{2003}. \ |
− | {2003}. \ | ||
\end{align*} | \end{align*} | ||
+ | |||
+ | Notice how <math>\frac{(2^2-1^2)}{3}=1, \frac{(3^2-2^2)}{5}=1, \frac{4^2-3^2}{7}=1,</math> etc. This is because all of these are in the form <math>\frac{n^2-(n-1)^2}{2n-1}=\frac{n^2-(n^2-2n+1)}{2n-1}=\frac{2n-1}{2n-1}=1</math>. There are <math>1001</math> of these terms since it begins at <math>n=2</math> and ends at <math>n=1001,</math> so <math>1001-2+1=1000.</math> Therefore, <math>a-b=1000+1 - \frac{1001^2}{2003}.</math> We can either manually calculate <math>\frac{1001^2}{2003}</math> or notice that <math>\frac{1001^2}{2003} \approx \frac{1001^2}{2002}.</math> <math>\frac{1001^2}{2003} < \frac{1001^2}{2002}</math>, so <math>-\frac{1001^2}{2003} < -\frac{1001^2}{2002}.</math> Therefore, | ||
+ | |||
+ | \begin{align*} | ||
+ | a-b \ | ||
+ | &=\frac{(2^2-1^2)}{3}+\frac{(3^2-2^2)}{5}+\frac{4^2-3^2}{7} + \; \dots \; + \frac{1001^2-1000^2}{2001} + 1 - \frac{1001^2}{2003} \ | ||
+ | &=1001-\frac{1001^2}{2003} \ | ||
+ | &>1001-\frac{1001^2}{2002} \ | ||
+ | &=1001-\frac{1001}{2} \ | ||
+ | &=\frac{1001}{2} \ | ||
+ | &=500.5 \ | ||
+ | \end{align*} | ||
+ | |||
+ | Since <math>a-b>500.5,</math> we can conclude that <math>a-b</math> is closer to <math>501,</math> than <math>500.</math> | ||
+ | |||
+ | Thus, our answer is | ||
== See also == | == See also == | ||
{{AMC10 box|year=2002|ab=P|num-b=22|num-a=24}} | {{AMC10 box|year=2002|ab=P|num-b=22|num-a=24}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 06:07, 15 July 2024
Problem
Let
and
Find the integer closest to
Solution 1
Start by subtracting and and group those with a common denominator together, leaving and to the side.
Notice how etc. This is because all of these are in the form . There are of these terms since it begins at and ends at so Therefore, We can either manually calculate or notice that , so Therefore,
Since we can conclude that is closer to than
Thus, our answer is
See also
2002 AMC 10P (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.